Title: Biogeochemistry of a California Floodplain as revealed by high resolution temporal sampling

Authors:
Erika L. Gallo¹
Randy Dahlgren¹
Edwin Grosholz²

¹ – Department of Land, Air and Water Resources. University of California, Davis. One Shields Ave. Davis, CA, 95616
² – Department of Environmental Science and Policy. University of California, Davis. One Shields Ave. Davis, CA, 95616

Abbreviated title: Biogeochemistry of a California Floodplain.

Keywords: floodplain, biogeochemistry, water quality, nutrient cycling, flood pulse
Summary:

1. Studies of biogeochemical processes in Mediterranean and semi-arid floodplains are scarce. For most floodplain studies, the temporal resolution of sampling ranges from several days to months. The purpose of this study was to examine water quality on a fine temporal scale (< 1 day) during and after flooding to elucidate short-term variations in biogeochemical processes.

2. We identified three distinct river-floodplain connectivity phases: river-floodplain surface connectivity (flooding), floodplain draining, and floodplain ponding; and collected 4-hour composite samples at the floodplain inlet and outlet.

3. The degree of mixing of from previous floods with new flood pulse water is significantly influenced by flood magnitude and duration. The extent of mixing in turn impacts floodplain biogeochemistry and source/sink dynamics for fluxes of dissolved and suspended constituents.

4. The floodplain was a sink for total and volatile suspended solids, total nitrogen (TN), ammonium nitrogen (NH$_4^+$-N), total phosphorus (TP) and chlorophyll-a; and a source for nitrate nitrogen (NO$_3$-N), orthophosphate (PO$_4$-P) and dissolved organic carbon (DOC).

5. During floodplain draining total nitrogen, NO$_3$-N and PO$_4$-P decreased, while NH$_4^+$-N remained at background levels. During ponding total nitrogen decreased while NH$_4^+$-N, TP, PO$_4$-P and DOC increased and NO$_3$-N remained at background levels.

6. Diel chlorophyll-a cycles were observed during the falling limb of the flood pulses and during hydrologic disconnection. The diel cycle was most pronounced during floodplain draining following the larger magnitude flood.

7. Our results demonstrate that major nutrient transformations occur in the span of several hrs and highlight the importance of high resolution temporal sampling in floodplain studies.
Introduction:

Until recently, floodplains as critical riverine ecosystem components were largely overlooked and poorly understood. The last 20 years have seen an increase of scientific and public interest in large river floodplains, particularly the Danube River in Austria (Heiler et al., 1995; Schiemer et al., 1999; Tockner et al., 1999; Hein et al., 2003), Amazonian rivers such as the Mapire in Venezuela (Vegas-Vilarubia and Herrera, 1993a, 1993b; Chaco et al., 2005), the Rhine and Meuse rivers in the Netherlands (Admiraal et al., 1993; Vanderbrink et al., 1993 and 1994) and the Ogeechee River in North America (Wainright et al., 1992; Benke et al., 2000 and 2001).

The fundamental concept outlining the relationship between rivers and their floodplains is the Flood Pulse Concept (FPC; Junk et al., 1989; Tockner et al., 2000). The FPC describes floodplains as continuously expanding and contracting systems that shift between lotic, lentic and terrestrial ecosystems, which are intimately linked to the river that floods them. The reoccurrence of flooding varies greatly between geographic locations and is highly dependent on the local hydrologic cycle, microclimate and the discharge regime of the river. Flood pulsing is therefore the major factor influencing floodplain biological production; as well as biotic and abiotic interactions within and between a floodplain and the river.

Currently, floodplain ecosystems exist primarily as isolated habitat patches with limited connectivity to the rivers that flood them (Ward et al., 1999). However, numerous studies have revealed the many benefits of floodplains: groundwater recharge (Rodegers et al., 2004), flux of organic matter between the river and floodplain (Wainright et al., 1992., Hein et al., 2003), flood and erosion protection (Zedler, 2003), deposition of suspended solids (Craft and Casey, 2000), increased primary and secondary productivity (Grosholz and Gallo in revision habitat for
migrating waterfowl, and spawning and rearing grounds for numerous fish (Sommer et al., 2001a and 2001b; Ribeiro et al., 2004). In addition, some studies have demonstrated the dynamic biogeochemical nature of large river-floodplain systems (Furch and Junk, 1993; Tockner et al., 1999; Amoros and Bornette, 2002).

Intense river system leveeing, impoundment, channelization and groundwater pumping in the California Central Valley have devastated the majority of the native riparian forests, eliminated most of the natural floodplains, and altered the local surface and groundwater hydraulics. Today, less than 13% of California’s floodplains remain, which include active channels, emergent wetlands and pastures (Hunter et al., 1999). Of the remaining floodplains, only 3.4% is managed for biodiversity or wildlife uses (Hunter et al., 1999). The complex hydrology that once defined the Central Valley riparian forests and floodplains has almost completely disappeared. Restoration of California’s river-floodplain systems has received much attention in the last 10 years, however, the majority of the research has focused on geomorphology and fisheries.

Current California floodplain research demonstrates that floodplain reared fish tend to have higher apparent growth rates than river channel reared fish (Sommer et al., 2001; Ribeiro et al., 2004). This is due to the higher abundance of prey items (Sommer et al., 2001 and 2004; Baranyi et al., 2002; Grosholz and Gallo, in revision); longer water residence time (Grosholz and Gallo in revision) and higher floodplain habitat heterogeneity (Ribeiro et al., 2004). In addition, floodplains may be of particular importance in California and the Pacific Northwest by providing spawning and rearing habitat for endangered Salmonids (Sommer et al., 2001 and 2004; Hall and Wissmar, 2004). However, scientific information regarding biogeochemical processes in lower and mid-order river-floodplain systems from Mediterranean and semi-arid climate is scarce.
Most studies of floodplain water quality have conducted sampling with temporal resolutions ranging from several days to months (Vegasvilarrubia and Herrera, 1993; Furch, 1993; Castillo, 2000; Baker et al., 2001; Robertson et al., 2001; Amoros and Bornette, 2002; Schemel et al., 2004). This resolution ignores short term (<1d) biogeochemical processes, which may be an important source of variation in nutrient transformations, changes in primary and secondary producers, and transport of nutrients and organic matter into and out of the floodplain. In addition, we don’t know how flood magnitude and hydrologic residence time influence short term (<1 d) changes in water quality during the draining and ponding hydrologic connectivity phases. The purpose of this study was to describe short-term fluctuations in water quality on a fine temporal scale during and after flooding in order to understand the importance of these fluctuations for overall water quality and nutrient transformations. Knowledge of water quality changes can help define the goals for future floodplain restoration efforts, and can aid in the development of successful management strategies.

Methods:

Study Site:

The floodplain is located in the lower Cosumnes River watershed at an elevation of 1.5 to 4 m above sea level. It is part of the Cosumnes River Preserve (CRP) which is owned by The Nature Conservancy and is located in the California Central Valley (Figure 1). The climate is Mediterranean with a mean annual precipitation of 45 cm yr\(^{-1}\) occurring between December and May and followed by a five month dry season from June to October. There are no major water diversions or impoundments along the Cosumnes River (Andrews, 1999; Kennedy and Whitener, 2000), therefore the river responds to the natural winter and spring watershed hydrology. The Cosumnes River is a 5\(^{th}\) order stream with headwaters located at an altitude of 2300 m on the
west side of the Sierra Nevada, and transports surface runoff and snowmelt to the San Francisco
estuary (Andrews, 1999). Historically the study site was an alluvial floodplain connected to
anastomosing river channels; however, the river and floodplain remained disconnected for
approximately 75 years due to leveeing of the river channel to allow agricultural practices on the
floodplain.

The experimental floodplain was created in the winter of 1995, when CRP managers and
the Army Corps of Engineers breached the levee along the Cosumnes River and allowed 98.5 ha
of agricultural fields in the historic floodplain to flood. The floodplain floods 8 - 12 hr after river
discharge exceeds 22.1 m3s$^{-1}$ at the Michigan Bar monitoring station, located 40 km upstream of
the floodplain (Florsheim and Mount, 2002). Asides from carving out a pond in the middle of
the upper floodplain, the site has gone through a natural restoration process(Figure 1). The site
has been colonized by willows, cottonwoods and herbaceous vegetation which have created the
habitat heterogeneity that can be observed today. The habitats present include ponds, grasslands,
early successional forests, and an old growth riparian forest.

A levee divides the experimental floodplain into an upper and lower floodplain (Figure
1). This study was conducted on the upper floodplain, which has an area of 37.4 ha (Figure 1).

There are two inlet levee breaches that allow water from the Cosumnes River to enter the upper
floodplain, North Breach (NB) and South Breach (SB). Two additional breaches along the levee
that divides floodplain allow water to flow from the upper to lower floodplain, East Breach (EB)
and West Breach (WB).

Sampling design:

We placed one automatic pump sampler (ISCO 6700) at NB to sample water coming into
the floodplain (inlet), and a second automatic sampler at WB to sample water leaving the
floodplain (outlet, Figure 1). The autosamplers were programmed to collect 500 ml of water every hr. During the rising limb of the first storm we collected 2 hr composite samples, the remainder of the samples were 4 hr composite samples. We collected samples with autosamplers starting February 18th at 5:00 pm and ending March 13th, 2004 at 11:00 am.

\textbf{Water Quality Analysis:}

Water samples were kept cool and dark prior to analysis. Total suspended solids (TSS) were analyzed by filtering water through a 0.45µm pre-combusted and weighed glass fiber filter (GFC-Gelman), drying the filter at 60°C for 24 – 48 hr, weighing it again and taking the difference between the initial and final weight. Finally, the filter was combusted at 550°C for 2 hr, allowed to cool to room temperature in a desiccator and weighed. The mass lost by combustion was determined to be the volatile suspend solids (VSS) or organic fraction of TSS. Unfiltered aliquots for total nitrogen (TN) and total phosphorous (TP) were digested using persulfate (Stark and Hart,1986). Subsamples for ammonium (NH\textsubscript{4}+-N), nitrate (NO\textsubscript{3}-N), orthophosphate (PO\textsubscript{4}3--P) and dissolved organic carbon (DOC) analyses were filtered through a 0.2 µm polycarbonate membrane (Millipore). TN, NO\textsubscript{3}N and NH\textsubscript{4}+N were analyzed using a conductimetric analyzer (Carlson,1986 and Yu \textit{et al.},1994). TP and PO\textsubscript{4}-P were analyzed using a spectrophotometer (Perking Elmel Lambda 38) and the methods described by Clescseri \textit{et al.} (1998). DOC was analyzed with a Tekmar-Dohrmann UV-enhanced persulfate digestion and infrared CO\textsubscript{2} detection spectrophotometer (Phoenix 800). Chorophyll-a (chl-a) measurements were made with ethanol pigment extraction fluorometry as described by Clescseri \textit{et al.} (1998).

\textbf{Hydrograph:}

We conducted this study between February 18 and March 21, 2004. During this period we sampled two flood pulses (Figure 2a), the first flood pulse (FP1) started on Feb 18 at
approximately 1:00 pm and had an approximate duration of 4 d and 3 hr with a mean discharge of 32.4 m3s$^{-1}$ and a peak discharge of 46.6 m3s$^{-1}$. The second flood pulse (FP2) began on February 25 at approximately 7:00 pm, had an approximate duration of 8 d and 19 hr, a mean discharge of 48.9 m3s$^{-1}$ and a peak discharge of 140.2 m3s$^{-1}$.

River-floodplain connectivity phases:

Based on continuous water depth sensor data, rating curves for NB, WB and EB (Mount et al., unpublished data) and a flood pulse water balance for SB, we identified three distinct surface water connectivity phases: river-floodplain connectivity, floodplain draining and disconnection (Figure 2; Error! Reference source not found.). Connectivity occurs during flood pulsing (FP1 and FP2), when active exchange of surface water from the Cosumnes River to the upper floodplain and from the upper floodplain to the lower floodplain takes place. Draining (DR1 and DR2) occurs when river water is no longer entering the floodplain, but water in the upper floodplain drains to the lower floodplain. Finally, disconnection refers to the floodplain “ponding” phase when there is no surface water exchange between the Cosumnes River, the upper floodplain and the lower floodplain. During this phase, water losses can be attributed mainly to infiltration and evapotranspiration.

Connectivity phase regressions:

Using Jump IN 5.1 (SAS Institute) we fitted simple linear and quadratic regressions to water quality parameters measured at WB (floodplain outlet) during the draining and ponding connectivity phases in order to discern the relationship of water quality constituents to hydrologic residence time during a particular phase. We reported the best of the fits based on the r^2 and p values. If neither fit was significant we reported the linear fit.

Flux Calculations:
Total flux in (TF_{phase}^{IN}) or out (TF_{phase}^{OUT}) for each connectivity phase was calculated as follows:

$$TF_{phase}^{IN} = \sum_{t_{start}}^{t_{end}} F_{interval}^{IN}$$

$$TF_{phase}^{OUT} = \sum_{t_{start}}^{t_{end}} F_{interval}^{OUT}$$

Where TF_{phase}^{IN} and TF_{phase}^{OUT} are in kg or Mg, $F_{interval}^{IN}$ and $F_{interval}^{OUT}$ are fluxes at a specific 2 or 4 hr time interval in kg or Mg, t_{start} and t_{end} are the starting and ending time intervals of a particular connectivity phase. We calculated $F_{interval}^{IN}$ and $F_{interval}^{OUT}$ as follows:

$$F_{interval}^{IN} = (WV_{interval}^{NB} + WV_{interval}^{SB}) \times [C]_{NB interval}$$

$$F_{interval}^{OUT} = (WV_{interval}^{EB} + WV_{interval}^{WB}) \times [C]_{WB interval}$$

Where $WV_{interval}$ m3 at the specified breach (NB, SB, EB or WB) during that 2 or 4 hr time interval and $[C]_{NB interval}$ and $[C]_{WB interval}$ are the concentrations of a particular water quality constituent at NB and WB during the same 2 or 4 hr time interval. $WV_{interval}$ at NB, EB and WB was calculated by adding the water volume calculated at a 10 minute time step from the beginning to the end of each phase as follows:

$$WV_{interval} = \sum_{t_{start}}^{t_{end}} (Q_t \times 600)$$

Where Q_t is the discharge in m3s$^{-1}$ at every 10 minute time interval and 600 is the time step between discharge calculations in seconds.

For fluxes into the floodplain we used the NB water quality data and rating curve. For fluxes out of the floodplain we used the WB water quality data and the WB and EB rating curves. Because of the difficulty in generating a rating curve for SB, the water volume at this breach during each 2 or 4 hour interval was calculated as:
\[W_{\text{SB}} = W_{\text{EB}} + W_{\text{WB}} - W_{\text{NB}} \]

Where \(W_{\text{SB}} \), \(W_{\text{EB}} \), \(W_{\text{WB}} \) and \(W_{\text{NB}} \) are the water volumes at the SB, EB, WB and NB respectively.

Due to autosampler malfunctions we were not able to collect autosampler samples at the inlet for the first 36 hrs of the second flood pulse. In order to fill this data gap we interpolated daily grab sample data collected at the inlet to fill missing values and compare trends between the two flood events.

Results:

Water quality analysis:

Suspended solids:

Suspended solid concentrations were higher at the inlet breach (NB) than at the outlet breach (WB) during both floods. Inlet suspended solid concentrations were higher during FP1 than FP2, whereas suspended solid concentrations at the outlet were higher during FP2 than FP1. TSS was highest during the rising limb of both flood pulses, peaking at 221 and 178 mg L\(^{-1}\) at the inlet for FP1 and FP2, respectively; and 56 and 62 mg L\(^{-1}\) at the outlet during FP1 and FP2, respectively (Figure 3a). During DR1, initial TSS concentrations at the outlet decreased but then increased as the floodplain continued to drain (Figure 3b). TSS concentrations decreased during DR2 and ponding by 1.10 mg L\(^{-1}\) day\(^{-1}\) and 0.60 mg L\(^{-1}\) day\(^{-1}\), respectively (Figure 3c, d).

The VSS proportion of TSS (%VSS) was higher at the outlet than at the inlet during both floods (Figure 5a). Outlet %VSS ranged from 17 to 90 and from 14 to 57 during FP1 and FP2, respectively; whereas %VSS at the inlet ranged from 12 to 32 and from 11 to 43 during FP1 and FP2, respectively. Although TSS at the outlet increased during the second half of DR1, % VSS decreased approximately 10.7 % day\(^{-1}\) (Figure 5b). However; while TSS decreased, %VSS
increased 3.2 % day$^{-1}$ during DR2 (Figure 5c). Initially, %VSS increased during ponding, but
then decreased as hydrologic residence time increased (Figure 5d).

Nitrogen:

TN concentrations were higher at the inlet and outlet during FP1 (Figure 6a). During the
initial hrs of both floods, TN concentrations at the inlet were higher than at the outlet, but as
flooding continued TN at the outlet tracked inlet concentrations. TN concentrations decreased
during DR1, DR2 and ponding at rates of 0.081 ppm day$^{-1}$, 0.061 ppm day$^{-1}$ and 0.043 ppm day$^{-1}$, respectively (Figure 6b, c, d).

NO$_3$-N concentrations were higher during FP2 than during FP1 at both the inlet and
outlet (Figure 7a); most likely due to watershed flushing. While NO$_3$-N concentrations during
FP1 at the inlet and outlet tracked each other closely (0.04 – 0.54 ppm), concentrations during
FP2 at the inlet (0.06 – 0.48 ppm) were lower than concentrations at the outlet (0.02 – 0.51 ppm)
during the rising limb and peak of the flood pulse. However, inlet concentrations were higher
(0.51 – 0.68 ppm) than outlet (0.48 - 0.62 ppm) during the falling limb of FP2. NO$_3$-N
concentrations decreased during DR1, DR2 and ponding at a rate of 0.09 ppm day$^{-1}$, 0.14 ppm
day$^{-1}$ and 0.004 ppm day$^{-1}$, respectively (Figure 7b, c, d).

NH$_4^+$-N concentrations were higher at both inlet and outlet during FP1 (0.02 - 0.39 ppm)
than during FP2 (0.01 - 0.34 ppm) (Figure 8a). Concentrations at the outlet were higher during
the rising limb of FP2, but lower than concentrations at the outlet during the falling limb of FP2.
NH$_4^+$-N concentrations increased during DR1 at a rate of 0.008 ppm day$^{-1}$ (Figure 8b).
Concentrations remained low during DR2 and rapidly increased during the ponding phase at a
rate of 0.028 ppm day$^{-1}$ (c, d).

Phosphorous:
TP concentrations were higher at the inlet (0.18 - 0.45 ppm) than the outlet (0.07 – 0.27 ppm) during FP1 (Figure 9a). Inlet TP was higher than outlet TP during the rising limb and peak of both floods, and concentrations closely tracked each other during the falling limb of FP2 (0.08 – 0.26 ppm) (Figure 9a). TP concentrations decreased during DR1 at a rate of 0.013 ppm day$^{-1}$ (Figure 9b). No change in concentrations was observed during DR2 and ponding (Figure 9c, d).

Inlet PO$_4$-P concentrations were higher than outlet concentrations during the rising limb and peak of FP1, but tracked each other during the falling limb of FP2 (Figure 10a). PO$_4$-P concentrations decreased during both draining phases at a rate of 5.6 ppb day$^{-1}$ and 5.2 ppb day$^{-1}$ (Figure 10b, c). However, PO$_4$-P concentrations increased during the ponding phase at a rate of 4.7 ppb day$^{-1}$ (Figure 10d).

DIN:DIP

Dissolved inorganic nitrogen (NO$_3$-N + NH$_4$$^+$-N) to dissolved inorganic phosphorous (PO$_4$$^{3-}$-P) ratios (DIN:DIP) were higher at the inlet than the outlet during FP1 and the falling limb of FP2 (Figure 12a). Ratios during FP1 decreased from 21.6 at the inlet and 11.7 at the outlet during the peak of the flood to 4.8 at the inlet and 3.6 at the outlet at the end of the flood. Ratios during FP2 were highest during the second smaller hydrograph peak (17.9 and 16.4 at the inlet and outlet, respectively) due to an increase in NO$_3$-N concentrations coupled with a decrease in PO$_4$-P concentrations. The DIN:DIP ratio decreased during the DR1 and DR2 at a rate of 0.94 day$^{-1}$ and 2.77 day$^{-1}$, respectively (Figure 12b, c). However, DIN:DIP increased during the ponding phase at a rate of 0.17 day$^{-1}$ (Figure 12d) suggesting an increase in DIP limitations.

Dissolved Organic Carbon:
The DOC concentrations were higher at the outlet than at the inlet during the falling limb of FP1; while during the falling limb of FP2 concentrations at the inlet and outlet tracked each other (Figure 13a). Outlet DOC concentrations decreased during the first 16 hrs of the floods from 11.3 to 5.3 ppm during FP1 and from 7.7 to 5.4 ppm during FP2. The highest concentrations of DOC were observed during the DR2 phase and ranged from 6.3 to 13.5 ppm. DOC concentrations increased during DR1 at a rate of 0.84 ppm day\(^{-1}\) (Fig 13b). However, concentrations during DR2 initially increased and then decreased (Figure 13c). As floodplain draining increased and water velocities decreased. During ponding DOC increased at a rate of 0.26 ppm day\(^{-1}\) (Figure 13d).

Chlorophyll-a

During the rising limb of the flood pulses an initial increase and peak in Chl-a concentrations at the inlet and outlet were observed, however, this increase was followed by a decrease in Chl-a during the falling limb of the hydrograph (Figure 14a). Chl-a concentrations during flooding were higher during FP1, and were consistently higher at the inlet than at the outlet, except for the last 24 hrs of FP2, during which outlet concentrations were slightly higher than at the inlet.

Interestingly, we observed a significant diel pattern in Chl-a concentrations during the falling limb of FP1 and FP2, as well as during the draining and ponding phases. Minimum Chl-a concentrations were observed at night between the hrs of 12:00 am and 5:00 am, and increased 1.5 to 4 fold during the day, peaking between 10:00 am and 4:00 pm. The range of the diel fluctuations was greatest during DR2 (3.1 - 13.5 ppb) and continued through the ponding period (Figure 14b, c, d).

Fluxes:
Although concentrations of most constituents were higher during FP1, the larger magnitude and longer duration of FP2 resulted in larger fluxes from the river to the floodplain (Table I). During our sampling period the floodplain was a net sink for TSS, VSS, TN, NH$_4^+$-N, TP and Chl-a (Table I). During FP1 the floodplain was a sink for all constituents except for PO$_4$-P and DOC. A total of 48.9 kg of PO$_4$-P and 3.3 Mg of DOC were exported from the floodplain during FP1. During FP2, a total of 752 kg of NO$_3$-N, 0.5 kg of TP and 0.4 Mg of DOC were exported out of the floodplain. Overall, relatively small proportions of NO$_3$-N, PO$_4$-P and DOC were exported from the floodplain (7.9%, 2.5% and 3.1%, respectively).

Discussion:

Impact of flood magnitude and duration on biogeochemical processes:

Flood pulsing resets aquatic floodplain succession and stimulates primary production by importing dissolved nutrients and organic matter into the floodplain (Ertl, 1985; Junk *et al.*, 1989; Van Den Brink *et al.*, 1993; Tockner *et al.*, 1999; Tockner *et al.*, 2000; Robertson *et al.*, 2001). While studies have directly addressed the impact of flood magnitude and duration on geomorphological processes (Arscott, 2002; Florsheim, 2002; Fagan and Nanson, 2004) and the impact of water sourcing on biogeochemical processes (Arscott, Tockner and Ward, 2001; Brunke, 2003), very few studies such as that by Ryder (2004) and Vandenbrink, Vankatwijk, and Vandervelde (1994) have addressed the impact of flood magnitude and duration on floodplain biogeochemistry and aquatic community structure. Several studies suggest that the timing and temperature of a flood are the major physical factors influencing biological productivity and nutrient cycling within the floodplain (Amoros and Bornette, 2002; Robertson *et al.*, 2001; Tockner *et al.*, 2000), and therefore quantification of the flood pulse is essential in order to
determine the quantity and quality of habitat that will be available for plants and animals within the floodplain (Benke et al., 2000).

Smaller magnitude floods at this site, such as those with mean Q < 36.8 m³ s⁻¹ and lasting less than 5 days (Gallo, unpublished data) do not completely mix the old floodplain water with the new flood pulse water. This is apparent by the close tracking of inlet (NB) and outlet (WB) water quality constituent concentrations, even though dilution of most water quality constituents, with the exception of NO₃-N was greater during FP2 due to the larger volume of water entering the floodplain. However, TSS concentrations at the outlet during FP2 did not vary greatly, suggesting that FP2 had a greater watershed and floodplain flushing effect than FP1. The greater magnitude and duration of FP2 contributed to enhanced floodplain flushing and thus a more dramatic resetting of aquatic floodplain conditions. In addition, the lower concentrations of most water quality constituents following FP2 suggest that the greater magnitude and duration of the flood reduced pool sizes of nutrients and organic matter available for subsequent biogeochemical processes.

Our study demonstrates that flood magnitude and duration greatly impact the extent to which the older floodplain water and the newer flood pulse water mix. The extent of mixing in turn significantly impacts fluxes of dissolved and suspended matter to and from the floodplain, which subsequently impact floodplain biogeochemistry. Therefore, in low and mid order stream systems flood magnitude and duration may play a larger role on floodplain biogeochemical processes than previously perceived.

The floodplain as a sink/source of water quality constituents

Exchanges of particulate matter between the river and the floodplain are limited to large flood events; and floodplains can be sources or sinks for several water quality constituents
(Vegasvilarubia and Herrera, 1993; Tockner et al., 1999; Tockner et al., 2002; Valett et al., 2004). The amount (flood magnitude) and timing of rainfall received in a particular year coupled with floodplain topography and sediment loads in the river may dictate whether the floodplain acts as a source or a sink for organic matter (Tockner et al., 1999; Ahearn et al., 2004;). Tockner et al. (2000) suggest that the ability of a floodplain to retain or supply a particular water quality constituent can alternate depending on the river-floodplain hydrologic connectivity phase and discharge. During the sampling period, our study site was a sink for TSS, VSS, TN, NH$_4$-N, TP and Chl-α; and although it was a source of NO$_3$-N, PO$_4$-P and DOC, the loads exported from the floodplain were not significant when compared to the loads imported from the river during flood pulses. In addition, the floodplain draining phases did not play a significant role in the export of water quality constituents, mainly due to the small volumes of water exported from the floodplain during draining. This finding suggests that floodplain flushing events of large magnitude and long duration are necessary in order to transport food resources, such as dissolved inorganic nutrients, phytoplankton and zooplankton from the floodplain to the river.

Studies show that floodplains act as particulate matter filters and as potential sources of DOC (Robertson, et al., 1999; Tockner et al., 1999; Tockner et al., 2002; Valett et al., 2004). The results from our study agree with these findings. The fluxes and the peak TSS and %VSS concentrations observed during FP1 and FP2 suggest that the larger and heavier inorganic particles, as well as some organic material settled out of the water column rapidly, which is evident by the consistently lower concentrations of TSS at the outlet. Although the net DOC exported from the floodplain was only 3.1% greater than the influx of DOC; it is important to note that in California, only 3.3% of the riparian forests remain (Hunter et al., 1999). The riparian vegetation, although successfully expanding to the herbaceously vegetated areas at our
study site, covers a relatively small percent of the floodplain area (Viers, unpublished data). Thus, at this time, production of terrestrially derived DOC and particulate organic matter (POM) and its subsequent export from the floodplain to the Cosumnes River may be minimal. However, in the future, as restoration of riparian forests in the Central Valley expands and the litter layer from floodplain forests increases, terrestrially derived floodplain POM and DOC fluxes may increase.

As hydrologic residence time increases, we expect terrestrially derived DOC to be incorporated into the aquatic foodweb and for production of aquatic DOC to increase. Our data demonstrate a net export of DOC during FP1, which occurred after a long period of river-floodplain hydrologic disconnection. However, a larger mass of DOC was exported during FP2, which was a flood event of larger magnitude and duration. Therefore, we suggest that large flushing events following long periods of hydrologic disconnection may result in greater export of aquatic DOC to the river.

The ability of a particular floodplain to sequester or supply a specific water quality constituent to the river may depend on a wide range of factors including current and historical land use, fire regime, soil type, geomorphology, etc. (Craft and Casey, 2000). Our results are not consistent with studies that demonstrate that floodplains are sinks for NO₃-N or sources of Chl-a (Tockner et al., 1999; Valett et al., 2005). This may be partly due to the rapid transformation of particulate and dissolved organic nitrogen to NO₃-N in the water column during flooding, and to the high loads of Chl-a flushed from the watershed during the 2004 water year, which followed 3 dry years. In addition, we expect top down pressures on primary producers within the floodplain to greatly impact Chl-a fluxes. We expect in future studies to observe inter-annual variations in
the source/sink nature of our study site, which will greatly depend on antecedent condition, flood magnitude and duration, and successional stage of the terrestrial vegetation.

Although the sink/source nature of a floodplain can change according to hydrologic connectivity and flood magnitude, there is general agreement among studies in the fate of nutrients deposited in the floodplain following a flood pulse. Studies in numerous river-floodplain systems demonstrate that changes in floodplain water chemistry are directly related to hydrologic connectivity, with the floodplain and river having similar concentrations of dissolved constituents during flooding, which begin to diverge from each other once hydrologic disconnection ensues (Vegas-Vilarrubia and Herrera, 1993; Heiler et al., 1995; Hein et al., 1999; Amoros and Bornette, 2002; Schemel et al., 2003; Schemel et al., 2004; Valett et al., 2005). As the river and the floodplain become hydrologically disconnected systems and areas of standing water develop within the floodplain, nutrient uptake and organic matter cycling become internal processes which are regulated by the conditions within each isolated water body (Junk et al., 1986; Heiler et al., 1995; Tockner et al., 2000).

Nutrient transformations during floodplain draining and ponding

Most studies have focused on subsurface connectivity (groundwater), river-floodplain connectivity and river-floodplain disconnection as the three main separate hydrologic connectivity phases (Heiler et al., 1995; Aspetsberger, et al., 2002; Tockner et al., 2002; de Domitrovic, 2003; Aoyagui, 2004; Baker and Vervier, 2004). Floodplain to river connectivity during draining as a separate phase with its own set of biogeochemical processes has received relatively little attention. This may arise from the short duration of this phase combined with the large temporal resolution of most studies, and from difficulty in identifying starting and ending points to floodplain draining, an effort which may be confounded by evapotranspiration and
infiltration. The impact of floodplain draining on water quality and subsequent floodplain processes is largely unkown. However, patterns in our water quality data demonstrate that the draining and ponding phases have distinct biogeochemical processes, which are due to reduced water velocities and slower mixing during draining and static hydraulic conditions during ponding.

Our data suggest that nutrients are quickly depleted and/or transformed during the draining and ponding phases, which is when the surface water from the river no longer impacts floodplain hydrology or biogeochemistry. During the initial hrs of draining, nutrient concentrations in the water column reflect the nutrient concentrations during the falling limb of the flood. However, as water velocities decrease, hydrologic residence time increases and anoxic conditions develop or continue within the soils, localized biogeochemical processes dominate nutrient dynamics. Studies demonstrate that following river-floodplain hydrologic disconnection, floodplain soil and water column respiration, release of dissolved organic compounds from submerged vegetation and from floodplain soils; primary productivity and invertebrate biomass increase (Furch *et al.*, 1988; Klinge *et al.*, 1983; Valett *et al.*, 2004, Grosholz and Gallo in revision).

Decreasing NO₃-N concentrations during the draining phases, coupled with the possible development of anoxic conditions in the soils due to decreased water velocities and increased hydrologic residence time suggest appreciable potential for denitrification from floodplain soils, which is consistent with findings from other studies (Klingensmith and Vancleve, 1993). In addition, the decrease in NO₃-N could be coupled with an increase in primary productivity, which is evident from the higher peaks of Chl-\(a\) during draining which has been demonstrated in other floodplain systems (Heiler *et al.*, 1995). Although denitrification and mineralization of
leached dissolved organic nitrogen (DON) from submerged detritus and vegetation can lead to water column increases in NH$_4^+$-N, concentrations remained low most likely due to the high affinity of primary producers for NH$_4^+$-N. The decreasing concentrations of PO$_4$-P during the draining phases may be attributed to luxury consumption of biologically available phosphorous by autotrophs and heterotrophic bacteria, and to adsorption to and subsequent settling of inorganic particles.

By the ponding phase, NO$_3$-N concentrations were near detection limit levels, while NH$_4^+$-N and PO$_4$-P concentrations increased, suggesting nutrient recycling and denitrification. Increases in NH$_4^+$-N and PO$_4$-P concentrations could also be attributed to the rapid mineralization of dissolved organic compounds to NH$_4$-N; the leaching of orthophosphates from the submerged organic matter and a shift of primary producers to nitrogen fixing photosynthetic algae. In addition, studies have demonstrated that animal activity in the water column and at the soil-water interface can increase nutrient concentrations via excretion, sediment resuspension, nutrient translocation and transport (Wilhelm, Hudson, and Schindler, 1999; Tarvainen, Sarvala, and Helminen, 2002; Vanni, 2002; Tarvainen, et al, 2005). Due to the high abundance of aquatic macroinvertebrates at our study site (Grosholz and Gallo, in revision), we hypothesize that animals significantly contribute to changes in nutrient concentrations during the draining and ponding phases, which is when the floodplain shifts from a lotic to a lentic system.

Nutrient concentrations measured at our site during hydrologic disconnection were similar to concentrations measured by Valett et al. (2005) in a floodplain associated with the Rio Grande, NM, were lower than concentrations measured at the Yolo Bypass, CA by Schemel et al. (2004), and were higher than concentrations measured by Vegas-Vilarrubia and Herrera (1993) in the Mapire System in Venezuela. When compared to concentrations measured by
Tockner et al. (2002) in a glacial floodplain of the Val Roseg System, DIP and TP concentrations at our site were higher while DIN concentrations were similar. These data demonstrate that there is a wide range of variability in floodplain biogeochemical transformations following river disconnection.

Pulses of allochthonous organic matter into the floodplain during flooding, as well as the riparian and floodplain vegetation, will have a large impact on nutrient input to the floodplain via leaching of nutrients from submerged and decaying organic matter (Klinge et al., 1983; Furch et al., 1988; Vegas-Vilarrubia and Herrera, 1993a; Baldwin, 1999). The dissolved organic matter (DOM) released from flooded litter and vegetation can in turn play an important role in regulating primary productivity and microbial activity by either enhancing or inhibiting photosynthetic activity (Robertson et al., 2001) and microbial nutrient utilization (Baldwin, 1999). It is suggested that DOM quality depends on the age of the organic material and hydrologic residence time. Fresh particulate organic matter submerged for a short period of time will release the most biologically available DOM, and aged organic matter submerged for a long time will release the most recalcitrant DOM (Baldwin, 1999). FP2 deposited in the floodplain more than twice the amount of particulate organic matter (as measured by %VSS) than FP1. The magnitude of flooding during and after FP2 resulted in extensive submersion of terrestrial vegetation, suggesting that DOM (as measured by DOC) released during DR2 was more labile than DOM released following FP1 or during ponding. We hypothesize that labile DOM was quickly taken up by primary producers and heterotrophic bacteria during the last 48 hrs of DR2, thus causing a rapid decline in DOC concentrations. The increase of DOC observed during ponding suggests leaching of recalcitrant DOM.
While VSS concentrations did not change during the draining phases, they decreased during the ponding phase, suggesting that small suspended organic matter such as phytoplankton, bacterioplankton and organic detritus was transferred into higher trophic levels such as macrozooplankton, aquatic macroinvertebrates and larval fish.

Short term water quality changes

Because the sampling frequency of most studies has been in the range of several days to months, then details of biogeochemical processes on floodplains following inundation are not entirely understood. Our data show that water quality can change rapidly (<4 hrs) as seen in the diel patterns of Chl-a, which are a measure of planktonic photosynthetic organisms. The diel variations observed in our study, and the peak times in Chl-a concentrations are consistent with patterns found during the decreasing water phases in the Amazonian floodplain lakes Batata and Mussura (Melo and Huzar, 2000; Melo et al., 2004). During flood events, phytoplankton productivity decreases due to the amounts of suspended solids in the water column which can decrease the amount of light available for photosynthesis. Additionally, flood pulses tend to significantly dilute phytoplankton biomass (Heiler et al., 1995), which in turn significantly decreases net water column primary productivity. Although the diel variations were observed during the falling limb of the flood pulses, the diel patterns were most dramatic during the DR2 and ponding phases. We hypothesize that Chl-a peaks were highest during DR2 due to the increased availability of dissolved inorganic nitrogen and dissolved organic compounds (as measured by DOC) following FP2; which may have alleviated nutrient limitations in the water column.

The increases in Chl-a concentrations during the day are indicative of high primary productivity rates, which have been observed in other floodplain systems (Vegas-Vilarrubia and
Herrera, 1993; de Melo and Huzar, 2000; Melo et al., 2004). The nightly decrease in Chl-a concentrations can be attributed to the reduction of photosynthetic activity during the night, respiration due to cell division and phytoplankton grazing by invertebrates. In past years, the phytoplankton community during and shortly after flooding has been observed to be dominated by diatoms, and green algae including *Zygnema sp.*, *Spirogyra sp.*, *Scenedesmus sp.* and *Ankistrodesmus sp.* (Gallo, unpublished data). However, during periods of very high hydrologic residence time plankton community dominance shifts to euglenophytes and N-fixing cyanophytes including *Chlamidomonas sp.*, *Anabeana sp.*, *Nostoc sp* and *Nodularia sp.* (Gallo, unpublished data). Previous research at this site has demonstrated that the floodplain can support large populations of planktonic grazers including, chironomids, copepods, cladocerans and ostracods (Grosholz and Gallo in revision), which can increase their feeding activity at night and cause a dramatic decrease in phytoplankton biomass in several hrs.

Our DIN:DIP ratios suggest that during the draining phases, nitrogen was the limiting nutrient, particularly following FP1. Nitrogen limitation increased with hydrologic residence time, however, primary producers may have compensated for inorganic nitrogen limitation through nitrogen fixation and utilization of dissolved organic nitrogen. N-fixing cyanobacteria are common photosynthetic organisms in wetlands and have been observed to be the dominant primary producer in the water column of our site (Gallo, unpublished data). In addition, numerous studies have demonstrated that when DIN is in short supply, uptake and utilization of dissolved organic nitrogen by photosynthetic organisms increases (Tyler, McGlathery, and Anderson 2001 and 2003). The availability of dissolved inorganic phosphorous coupled with the ability of primary producers to utilize nitrogen from a variety of sources may have enhanced photosynthetic activity during the draining and ponding phases. Our DIN:DIP ratio during the
ponding phase suggests an increase in phosphorous limitation with hydrologic residence. The increase of phosphorous limitation, coupled with an overall increase in Chl-\(a\) concentrations suggest the transformation of inorganic nutrients to organic forms.

Although we did not observe diel changes in nutrient concentrations, we hypothesize that nutrient transformations occur rapidly, and once nutrients are taken up they are sequestered via trophic transfers. In addition, some studies have suggested that within a floodplain there may be many states of nutrient cycling and primary production (Vegas-Vilarrubia and Herrera, 1993) which may be a product of the heterogenous nature of floodplain systems. The results from this study demonstrate that high resolution temporal sampling is important in order to discern short-term water quality changes, particularly since floodplains are dynamic ecosystems where major nutrient transformations occur in the span of several hrs. Future work will involve the impact of varying degrees of hydrologic residence time and habitat heterogeneity on floodplain biogeochemistry.

Acknowledgements:
This study was supported by CALFED grant FLDPM. We’d like to thank the Nature Conservancy and private land owners for access to the study site, the John Muir Institute for the Environment, Jeff Mount and the UC Davis Center for Watershed Sciences and the lab and field assistance from Carson Jeffres, Dylan Ahearn, Andrew Welch, Chris Jannusch, Su-Fei Kuok, Xien Wang, Julie Makar, Anke Mueller-Solger and Craig Rasmussen.

References:

Craft, C. B. and W. P. Casey (2000). Sediment and nutrient accumulation in floodplain and
perennial floodplain ponds of the Sacramento River, California (USA), with implications for
Fujii, M., C. Yoshimura, K. Tockner and T. Omura (2003). DOM formation from POM in
Godoy, J. R., G. Petts and J. Salo (1999). Riparian flooded forests of the Orinoco and Amazon
systems. Canadian Special Publication in Fisheries and Aquatic Sciences 106: 110-127.
hyporheic zone of a glacial floodplain. Canadian Journal of Fisheries and Aquatic Sciences
58(7): 1319-1335.
Navodaru, I., A. D. Buijse and M. Staras (2002). Effects of hydrology and water quality on the
dissolved organic matter from floodplain litter: influence of origin and oxygen levels.
Freshwater Biology 45(3): 333-342.
Pinay, G., H. Decamps and R. J. Naiman (1999). The spiralling concept and nitrogen cycling in
Community structure, biomass and productivity. Aquatic Sciences 59(1): 74-93.
and seston transport in streams of an alpine glacial flood plain. Freshwater Biology 47(5):
985-993.
variability, water chemistry, and phytoplankton biomass in a large floodplain of the
Sacramento River, CA, USA. Hydrobiologia 513(1-3): 129-139.
Schiemer, F., C. Baumgartner and K. Tockner (1999). Restoration of floodplain rivers: The
'Danube restoration project'. Regulated Rivers-Research & Management 15(1-3): 231-244.
California's Yollo Bypass: Evidence that flood control can be compatible with fisheries,
habitats, and agriculture. Fisheries 26(8): 6-16.
variation on channel and floodplain biota and habitats of the Sacramento River, California,

<table>
<thead>
<tr>
<th></th>
<th>Flood 1 (FP1)</th>
<th>Draining 1 (DR1)</th>
<th>Flood 2 (FP2)</th>
<th>Draining 2 (DR2)</th>
<th>Total</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flux In</td>
<td>Flux Out</td>
<td>Flux In</td>
<td>Flux Out</td>
<td>Flux In</td>
<td>Flux Out</td>
</tr>
<tr>
<td>TSS (Mg)</td>
<td>292</td>
<td>101</td>
<td>968</td>
<td>483</td>
<td>1.0</td>
<td>1260</td>
</tr>
<tr>
<td>VSS (Mg)</td>
<td>46</td>
<td>30</td>
<td>135</td>
<td>100</td>
<td>0.4</td>
<td>181</td>
</tr>
<tr>
<td>TN (kg)</td>
<td>6559</td>
<td>603</td>
<td>21939</td>
<td>18891</td>
<td>124</td>
<td>28499</td>
</tr>
<tr>
<td>NO₃-N (kg)</td>
<td>1487</td>
<td>410</td>
<td>7292</td>
<td>8017</td>
<td>27</td>
<td>8779</td>
</tr>
<tr>
<td>NH₄⁺-N (kg)</td>
<td>594</td>
<td>534</td>
<td>1605</td>
<td>1150</td>
<td>4</td>
<td>2199</td>
</tr>
<tr>
<td>TP (kg)</td>
<td>956</td>
<td>769</td>
<td>2544</td>
<td>2528</td>
<td>15</td>
<td>3501</td>
</tr>
<tr>
<td>PO₄-P (kg)</td>
<td>243</td>
<td>279</td>
<td>825</td>
<td>797</td>
<td>6</td>
<td>1067</td>
</tr>
<tr>
<td>DOC (Mg)</td>
<td>25</td>
<td>27</td>
<td>99</td>
<td>98</td>
<td>1.2</td>
<td>124</td>
</tr>
<tr>
<td>Chl-a (kg)</td>
<td>19</td>
<td>17</td>
<td>46</td>
<td>44</td>
<td>1</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure Legends:

Figure 1. The Cosumnes River Preserve floodplain. Black arrows denote generalized surface water flow paths. Black boxes indicate the 4 levee breaches in the study site: 2 water entry breaches along the Cosumnes River (NB and SB) and 2 exit breaches from the upper floodplain to the lower floodplain (WB and EB). Stars denote locations of autosamplers at NB (inlet) and WB (outlet).

Figure 2. (a) Cosumnes River discharge at the Michigan Bar monitoring station during our study period; and (b) electrical conductivity (EC) of water at the inlet breach (black) and exit breach (grey).

Figure 3. Total suspended solids (TSS) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 4. Volatile suspended solids (VSS) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 5. Percent volatile suspended solids of the total suspended solids (% VSS) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 6. Total nitrogen (TN) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.
Figure 7. Nitrate nitrogen (NO$_3$-N) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 8. Ammonium nitrogen (NH$_4$$^+$-N) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 9. Total phosphorous (TP) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 10. Orthophosphate (PO$_4$-P) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 11. Total nitrogen to total phosphorous ratio (TN:TP) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 12. Dissolved inorganic nitrogen to dissolved inorganic phosphorous ratio (DIN:DIP) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.

Figure 13. Dissolved organic carbon (DOC) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit regressions of TSS at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.
Figure 14. Chlorophyll a (Chl-a) at (a) the inlet breach (black) and outlet breach (grey) during the entire study period; best fit diel regressions of Chl-a at the outlet during (b) draining 1, (c) draining 2 and (d) ponding.
\[m = -0.604 \text{ mg L}^{-1} \text{ day}^{-1} \]

\[m = -1.104 \text{ mg L}^{-1} \text{ day}^{-1} \]

\[r^2 = 0.577 \quad p < 0.001 \]

\[r^2 = 0.351 \quad p = 0.009 \]

\[r^2 = 0.309 \quad p = 0.024 \]

\[r^2 = 0.577 \quad p < 0.001 \]

\[m = -0.604 \text{ mg L}^{-1} \text{ day}^{-1} \]

\[m = -1.104 \text{ mg L}^{-1} \text{ day}^{-1} \]
VSS (mg L$^{-1}$)

Draining 1
- $r^2 = 0.012$
- $p = 0.670$
- $m = -0.083$ mg L$^{-1}$ day$^{-1}$

Draining 2
- $r^2 = 0.247$
- $p = 0.062$
- $m = -0.276$ mg L$^{-1}$ day$^{-1}$

Ponding
- $r^2 = 0.424$
- $p < 0.001$
- $m = -0.323$ mg L$^{-1}$ day$^{-1}$
a

\[m = -10.71 \text{ mg L}^{-1} \text{ day}^{-1} \]

\[m = 3.23 \text{ mg L}^{-1} \text{ day}^{-1} \]

b

\[r^2 = 0.334 \]
\[p = 0.011 \]
\[m = 3.23 \text{ mg L}^{-1} \text{ day}^{-1} \]

b

\[r^2 = 0.190 \]
\[p = 0.040 \]
\[m = -10.71 \text{ mg L}^{-1} \text{ day}^{-1} \]

c

\[r^2 = 0.216 \]
\[p = 0.013 \]

d

\[r^2 = \frac{4}{15} \]
The graph shows the concentration of TN (ppm) over time for different treatments:

- **Draining 1**
 - February 22 to March 11
 - $r^2 = 0.479$, $p < 0.001$, $m = -0.081$ ppm day$^{-1}$

- **Draining 2**
 - February 22 to March 13
 - $r^2 = 0.327$, $p < 0.001$, $m = -0.043$ ppm day$^{-1}$

- **Ponding**
 - February 22 to March 13
 - $r^2 = 0.215$, $p = 0.040$

The graph also includes a trend line for each treatment, indicating the linear relationship between time and TN concentration.
a

- **Ponding**: Values range from 0.0 to 0.8 ppm.
- **Draining 1** and **Flood 1**: Values range from 0.0 to 0.8 ppm.
- **Draining 2** and **Flood 2**: Values range from 0.0 to 0.8 ppm.
- **Ponding**: Values range from 0.0 to 0.8 ppm.

Regression Analysis

- **Draining 1**:
 - $r^2 = 0.909$
 - $p < 0.001$
 - $m = -0.087$ ppm day$^{-1}$

- **Draining 2**:
 - $r^2 = 0.955$
 - $p < 0.001$
 - $m = -0.140$ ppm day$^{-1}$

- **Draining 2**:
 - $r^2 = 0.109$
 - $p = 0.039$
 - $m = -0.004$ ppm day$^{-1}$
The graph illustrates the concentration of NH$_4^+$ (ppm) over time, with markers indicating specific events:

- **Feb 22** to **Feb 24**: Draining 1 event.
- **Feb 25** to **Feb 27**: Flood 1 event.
- **Feb 28** to **Feb 29**: Draining 1 event.
- **Mar 02** to **Mar 04**: Flood 2 event.
- **Mar 05** to **Mar 07**: Draining 2 event.
- **Mar 08** to **Mar 10**: Ponding event.

Statistical Analysis:

- **Draining 1**:
 - $r^2 = 0.286$
 - $p = 0.013$
 - $m = 0.008$ ppm day$^{-1}$

- **Draining 2**:
 - $r^2 = 0.054$
 - $p = 0.386$
 - $m = -0.002$ ppm day$^{-1}$

- **Ponding**:
 - $r^2 = 0.639$
 - $p < 0.001$
 - $m = 0.028$ ppm day$^{-1}$
\[r^2 = 0.481 \]
\[p < 0.001 \]
\[m = -5.60 \text{ ppb day}^{-1} \]

\[r^2 = 0.298 \]
\[p = 0.017 \]
\[m = -5.24 \text{ ppb day}^{-1} \]

\[r^2 = 0.191 \]
\[p = 0.008 \]
\[m = 4.70 \text{ ppb day}^{-1} \]
DOC (ppm)

- **Draining 1**: $r^2 = 0.604$, $p < 0.001$, $m = 0.844$ ppm day$^{-1}$
- **Draining 2**: $r^2 = 0.566$, $p = 0.002$
- **Ponding**: $r^2 = 0.639$, $p < 0.001$, $m = 0.261$ ppm day$^{-1}$