

HaD to Py Users’ Manual
Tool to get HDF and DSS file data into a Python environment!

What Does HaD to Py Do?

All documents are available online at

https://github.com/latomkovic/HaD-

to-Py. The script and its dependent

files are free to the public.

Everything was written by Lily Ann

Tomkovic, a graduate student

researcher at the University of

California Davis, working at the

Center for Watershed Sciences.

What Does HaD to Py
Need?

To use HaD to Py in the way it was

intended, the user should have the

following:

 Python

 HEC-RAS 5.0 or earlier

o Or just a 5.0 HDF

output file

 HEC-DSSVue 2.0 or earlier

 Python 2.7 or earlier

o Several Python

Modules listed

later

Further instruction is found within

the Users’ Manual.

Author: Lily Ann Tomkovic

Graduate Student Researcher

UC Davis, Center for Watershed
Sciences

latomkovic@ucdavis.edu

https://github.com/latomkovic/HaD-to-Py
https://github.com/latomkovic/HaD-to-Py

1 | P a g e

TABLE OF CONTENTS

Introduction ... 2

Requirements .. 2

Download Package Contents and Description ... 3

Instructions .. 4

Concept .. 4

File Requirements .. 4

Python Modules Required ... 4

Jython Files for HEC-DSS .. 4

obs_path Text File .. 6

one_dim_comp_paths Text File .. 8

two_dim_coords Text File ... 10

DSS_data_input Text File ... 10

DSS_data_output Text File .. 10

ras_2D_cells Text File .. 11

Main Code.. 11

hdf_filename.. 11

obs_dss .. 11

twoD_dss ... 11

plot_dir .. 11

Tutorial Example .. 12

Open RAS Project ... 12

Run RAS Project ... 12

Display Gage Shapefile .. 12

Enter two_dim_coords.txt Data .. 13

Enter obs_paths.txt Data ... 15

Enter one_dim_comp_paths.txt Data ... 16

Modify py_HDF_DSS.py Preamble ... 17

hdf_filename.. 17

obs_dss .. 17

twoD_dss ... 17

plot_dir .. 18

Run the Code! .. 18

Viewing the Plots Interactively with GIS .. 18

2 | P a g e

INTRODUCTION

HaD to Py stands for HDF and DSS to Python, and it extracts results from the output file from a HEC-RAS simulation

and creates plots which can quickly be viewed spatially against observed data for calibration or validation.

Extracted data can be saved, as well.

All documents are available online at https://github.com/latomkovic/HaD-to-Py. The script and its dependent files

are free to the public. Everything was written by Lily Ann Tomkovic, a graduate student researcher at the

University of California Davis, working at the Center for Watershed Sciences.

Several people helped along the way to make this tool possible, including but not limited to: Bill Fleenor at UCD,

and Joan Klipsch, Gary Brunner, Bill Charley, Mike Perryman, and Tom Evans at USACE-HEC.

For help understanding how to use the code properly please contact Lily Ann Tomkovic at latomkovic@ucdavis.edu

REQUIREMENTS

To use HaD to Py in the way it was intended, the user should have the following installed on their machine:

 Python

 HEC-RAS 5.0 or earlier

o Or just a 5.0 HDF output file

 HEC-DSSVue 2.0 or earlier

 Python 2.7 or earlier

o Several Python Modules listed later

The user will also need to designate a folder or working directory with all of the files included in the download

package.

mailto:latomkovic@ucdavis.edu

3 | P a g e

DOWNLOAD PACKAGE CONTENTS AND DESCRIPTION

FILE DESCRIPTION

pyHDF_DSS.py The main code which the user will run in order to get the plots/data

storeDSSdata.py A Jython code which will be peripherally run by HEC-DSSVue from within
the main code
It can store records to a DSS file path

getDSSdata.py A Jython code which will be peripherally run by HEC-DSSVue from within
the main code
It accesses DSS records and outputs the values and times to a temporary
txt file found in the temp_files folder

obs_paths.txt File needed to provide observed data DSS path to the script.
See obs_path Text File section for correct formatting and more
information on its use

one_dim_comp_paths.txt File needed to provide the computed one-dimensional data DSS path to
the script.
See one_dim_comp_paths Text File section for correct formatting and
more information on its use

two_dim_coords.txt File needed to provide the geographic coordinates of the gages found in
RAS 2D Flow Areas.
See

two_dim_coords Text File section for correct formatting and more
information on its use

temp_files

 DSS_data_input.txt

 DSS_data_output.txt

 ras_2D_cells.txt

A folder containing temporary txt files

 The temporary input file for storing DSS data

 The temporary output file for getting DSS data

 A temporary file which contains pertinent information on the
gages found in 2D flow area

Tutorial

 txtFiles
o obs_paths
o one_dim_comp_paths
o two_dim_coords

 BaldCreek2D.dss

 BaldCreekObservedData.dss

 BaldEagleGages (.cpg, .dbf,
.sbn, .sbx, .shp, .shx)

The folder which contains all of the files necessary for the Tutorial
Example

 Where the completed txt files are located for the tutorial
o The observed data DSS pathnames
o The computed 1D RAS DSS paths
o The spatial coordinates of the gages within the 2D areas

 An empty DSS file where the code can store 2D data that it
harvests

 A DSS file which has (fabricated for example) observed data to
compare to the gages

 A shapefile which has (fabricated for example) gages for the
tutorial

4 | P a g e

INSTRUCTIONS

CONCEPT

The main idea is pretty simple: there are observed data entries in a DSS file, and an HEC simulation with one-

dimensional and two-dimensional computed data entries in a separate DSS file and an HDF file, respectively. HaD

to Py takes the data from the HDF and DSS files and handles them in Python.

HaD to Py 1.0 was initially developed to handle water surface elevation plots, but it would be rather simple to

modify the code and allow other variables to be shown.

ITEM TO PLOT LOCATION

Observed Data An Observed Data DSS File

1D Computed Point The HEC-RAS Output DSS File

2D Computed Point The HEC-RAS Output HDF File

FILE REQUIREMENTS

Before using the code, be sure that the required files and modules are downloaded/imported and in the right

places.

It is best to take all of the files found in the Download Package Contents and Description section of the Introduction

into the working directory folder, or the main folder where the code is intended to be. This will become clearer in

the File Requirements section.

PYTHON MODULES REQUIRED

os, numpy, scipy, Tkinter, tkMessageBox, subprocess, h5py, matplotlib.pyplot

All of the above modules need to be downloaded/available to the user’s Python interpreter.

JYTHON FILES FOR HEC-DSS

There are two files which HEC-DSSVue will use when the main Python code passes them through the command

line. One file retrieves DSS data and the other writes a DSS record to a file.

It is not recommended to change or delete these files. For more information on what these files do, see the

following sections for more information.

5 | P a g e

STOREDSSDATA.PY

In the main code (see Main Code section) there’s a function, store_to_DSS which passes this script to HEC-DSSVue

in the command line. In order to handle the arguments in the way that the HEC-DSSVue scripting environment

enjoys, a txt file in the temp folder is also passed in which contains the actual data to be stored.

The storeDSSdata.py script handles the data given to it within the HEC-DSSVue environment and creates a DSS

path and stores data to it, see below.

The functions found in storeDSSdata.py are necessary because when HEC-DSSVue reads the arguments passed to

it, it treats spaces as a delimiter. For instance, a file path that looks like “C:/Users/Test/My Documents/Python”

will be read as 2 strings: “C:/Users/Test/My” and “Documents/Python”.

GETDSSDATA.PY

In the main code (see Main Code section) a function, get_DSS_data passes this script to HEC-DSSVue in the

command line. The script is used by DSSVue to produce a temporary output file that the get_DSS_data function

reads and stores to a variable in Python.

Similar to the storeDSSdata.py script, the getDSSdata.py script has functions that are necessary to compile DSS

filenames, pathnames, and time windows in order to use the HEC scripting conventions to access and output path

data. See the diagram below for more clarity.

def store_to_DSS(…)
 infile = … storeDSSdata.py

values are written to
temp_input_filename

subprocess.call(… infile…

temp_input_filename …,

 …)

Opens HEC-DSSVue from the

command line (user doesn’t see

what’s happening here)

The arguments infile

(storeDSSdata.py) and

temp_input_filename

(DSS_data_input.txt) among others

are passed to HEC-DSSVue

HEC-DSSVue will run this

script. The script handles

the other arguments

passed in the main code to

create a DSS path

The values written to this

file will be stored to the

DSS path created

Main Code

6 | P a g e

OBS_PATH TEXT FILE

The obs_path text file contains a simple list of the observed data paths that the code will use to retrieve data from

the simulation period.

In the main code (see Main Code section) a function opens the obs_path.txt file and reads the pathname

corresponding to the gage argument which is passed through the function.

The following demonstrates what the file should look like so that the get_obs_path function works properly:

The important points of this file are highlighted with the boxes and arrows:

1. The words “Gage: “ and “Path: “ must only be used to indicate the gage name and pathname.

a. i.e. the pathname shouldn’t contain “Gage: “ or “Path: “ as they are used as delimiters to parse

the data

2. There are no line breaks between entries

3. There is one space at the end of the file

a. Again, the code uses a line break to delimit the pathnames

The user is required to correlate the observed data DSS path to a specified gage. See

Gage: SUT Path: /SUTTER SLOUGH AT COURTLAND/SUT/STAGE/31DEC2005/IR-DAY/USGS/
Gage: VON Path: /SACRAMENTO RIVER AT VERONA/VON/STAGE/01FEB2005/1HOUR/USGS DWR/
Gage: YBY Path: /YOLO BYPASS NEAR WOODLAND/YBY/STAGE/28FEB2005/IR-DAY/USGS/

def get_DSS_data(…)
 infile = … getDSSdata.py

subprocess.call(… infile…
temp_output_filename …,

 …)

temp_data_file =

open(temp_output_filename, 'r+')

 lines = temp_data_file.readlines()

 …

 data_list = lines[1]

 …

Opens HEC-DSSVue from the

command line (user doesn’t see

what’s happening here)

The arguments infile

(getDSSdata.py) and

temp_output_filename

(DSS_data_output.txt) among

others are passed to HEC-

DSSVue

HEC-DSSVue will run this

script. The script handles

the other arguments

passed in the main code

to access a DSS path and

its corresponding data.

It takes that data and

writes it out to

temp_output_filename

Main Code

The main code will then open and read the

temp_output_filename file

(DSS_data_output.txt in the temp files folder)

and store the values to a variable

7 | P a g e

8 | P a g e

Enter obs_paths.txt Data Section for an example of entering data correctly.

ONE_DIM_COMP_PATHS TEXT FILE

In the main code (see Main Code section) a function, get_all_plot_data, uses the one_dim_comp_paths.txt file and

reads the pathname corresponding to the gage argument which is passed through the function.

The one_dim_comp_paths text file has a similar appearance to the obs_path file, but has a small distinction.

If there are no 1D gages, then this file should be completely empty, but the file should still exist.

The following demonstrates what the file should look like so that the get_all_plot_data function works properly:

The important points are the same as before.

The distinction between this and obs_path is that the last 3 fields of the pathname have %s instead of any value.

These three values will change based on the output of the RAS simulation.

For instance, if the simulation time period is from 14FEB2009 10:00 – 23FEB2009 23:00, and the hydrograph

interval was set to 15MIN, and the short ID of the plan was TESTING, then the last three fields will look like:

…/01FEB2009/15MIN/TESTING/

The get_all_plot_data function will assign variables to the pathnames which will then be used to access computed

data.

The user is required to correlate the observed gage location to a RAS 1D Cross section. See

Gage: SSS Path: /STEAMBOAT SLOUGH SAC TO SUTTER/16027.84/STAGE/%s/%s/%s/
Gage: SUT Path: /SUTTER SLOUGH SAC TO ELK/10665.02/STAGE/%s/%s/%s/
Gage: VON Path: /SACRAMENTO NCC TO AMERICAN/106605.4/STAGE/%s/%s/%s/

9 | P a g e

Enter one_dim_comp_paths.txt Data Section for an example of entering data correctly.

10 | P a g e

TWO_DIM_COORDS TEXT FILE

This contains the latitude and longitude (in meters) for each gage that is found in a 2D area. Currently, the code

will find the cells that correlate to the gage coordinates and store those cell indices for each version of the

geometry used.

This is particularly helpful for times where one is changing the cell size or arrangements of cells in a 2D area.

In the main code (see Main Code section) a function, get_coordinates, uses the two_dim_coords.txt file and stores

the coordinate pairs corresponding to the gage argument which is passed through the function.

Below is an example of the format of this file required for the get_coordinates function to work properly:

Important points on this file are:

1. There should be three “fields” and they are “Gage:”, “Lat:”, and “Lon:”

2. Lat and Lon should be in meters, not decimal degrees, or any other coordinate system

3. There should be a blank line at the end

What the user needs to do here is to correlate the observed gage location to a RAS 1D Cross section. See Enter

two_dim_coords.txt Data Section for an example of entering data correctly.

DSS_DATA_INPUT TEXT FILE

This is a temporary file. It does not need to contain anything, nor does it need to exist. The main code will write the

file in the temp_folder location within the working directory.

The Jython scripts that communicate with HEC-DSSVue use this text file to relay Python variables to DSS and store

into a DSS path.

DSS_DATA_OUTPUT TEXT FILE

This is a temporary file. It does not need to contain anything, nor does it need to exist. The main code will write the

file in the temp_folder location within the working directory.

The Jython scripts that communicate with HEC-DSSVue use this text file to relay the data back to the main Python

code. It is how the code accesses the values in the DSS file.

Gage: SBP Lat: 616878.502335 Lon: 4293808.60825
Gage: YBY Lat: 617940.666062 Lon: 4281881.68027
Gage: LIS Lat: 623108.260000 Lon: 4256436.96000

11 | P a g e

RAS_2D_CELLS TEXT FILE

The main code will output this file once it finds the closest (spatially) cell index to the gage point, the distance from

the cells center to the gage, and the 2D Flow Area where the cell resides. This is not necessarily the cell in which

the gage resides, because the program finds the closest cell node. The first line indicates which .p##.hdf file from

which the indices were extracted, and the next lines correlate to each gage location.

If the last time the code was ran was for the specified HDF file, it will use the locations that the code has already

found, otherwise it will find the cell indices. So if the geometry changes, the contents of this file should be erased

before re-running the code with the same HDF file.

This file needs to exist in the temp_folder location within the working directory.

MAIN CODE

The main code is in the py_HDF_DSS.py file found in the download package.

The user will need to change 4 lines for their purposes:

hdf_filename = ‘C:\...\RAS_Project\ProjectName.p01.hdf’
obs_dss = r'C\...\ObservedDataFile.dss'
twoD_dss = r’C:\...\Example2D.dss’
plot_dir = r'C:\Users\lt\Documents\Python\Plots '

Be sure to use an r before the quotation mark, this avoids escape characters within the filename.

HDF_FILENAME

This needs to be the hdf file corresponding to the plan to be evaluated, and it should be located within the RAS

project folder (i.e. don’t move this file to another location to run the script).

OBS_DSS

The path and DSS file where the observed data reside. It can be named anything (it doesn’t need to be named

ObservedDataFile.dss).

TWOD_DSS

The path and DSS file where the code will store data derived from the 2D coordinates, or the gages. It can be a

blank file, or a file which already has some entries.

PLOT_DIR

The plot_dir variable describes where the plot printed graphs (*.png) will be saved. The script allocates a special

folder for each plan shortID and stores all of the graphs within the plot directory folder.

For example, if the gage is “HEY” and the plan is “TEST PLAN” then the plot for “HEY” will be located in:

plot_dir\TEST PLAN\HEY.png

12 | P a g e

TUTORIAL EXAMPLE

The tutorial example provided uses a project found in the example projects folder of HEC-RAS. If the projects

haven’t already been installed, go to:

http://www.hec.usace.army.mil/software/hec-ras/downloads/Example_Projects.exe to download them.

The first tutorial uses the Bald Eagle Creek example project found in Example Projects\2D Unsteady Flow

Hydraulics\BaldEagleCrkMulti2D. Specifically, it uses the 1d-2D Dambreak Refined Grid plan (p15).

The tutorial document will walk through how to enter the data into the txt files, but to just see the code work, the

correct files are located in the Tutorial/txtFiles folder. Just take those files and copy them over the files in the

working directory.

OPEN RAS PROJECT

To start, open and run the plan in RAS. Open the project by going to the folder listed above from within RAS.

RUN RAS PROJECT

Select the Unsteady Flow Analysis Editor and choose File > Open 1d-2D Dambreak Refined Grid

o Go to Options > Stage and Flow Output Locations… and select Bald Eagle Cr. Lock Haven 103189

and add to the list using the arrow

This creates an output hydrograph at the location at one of our gages

 Press Ok

o Compute the plan by pressing the Compute button

DISPLAY GAGE SHAPEFILE

(Optional) While the simulation is running, add the gage shapefile to RAS Mapper so as to see the location of the

gages

o From the main RAS window, select RAS Mapper

 Right click on Map Layers

 Select Add map data layers…

 Navigate to the

BaldEagleGages.shp file found in the download package under the Tutorial

folder

 (extra bonus) To add labels:

o Double-click on BaldEagleGages to open the Layer Properties

o Select Label Features with Attribute Column(s)

o Click Edit

 Choose StationID in the dropdown under Attribute Text

Now the gages are in the geometry and easy to visualize

http://www.hec.usace.army.mil/software/hec-ras/downloads/Example_Projects.exe

13 | P a g e

ENTER TWO_DIM_COORDS.TXT DATA

In RAS Mapper, it is clear that 4 gages are in the 2D Flow Area and 1 is on a 1D Cross Section. In order to get the
data from the 2D Flow Area cell points, we need to enter gage coordinates.

From the working directory (where the download files are found, and where this file is found!) open the
two_dim_coords.txt file

For a description of this file, go to the

14 | P a g e

two_dim_coords Text File section.

o The coordinates are Latitude and Longitude in meters. This is how RAS finds points.
o There are 2 ways to get the XY coordinates from the shapefile points:

 Populate the XY coordinates of the shapefile in ArcGIS using the Add XY Coordinates tool
 Using RAS Mapper:

 Zoom in pretty tight on a gage

 Select the Measuring tool

 Double-click with (left-click) on the gage point
o Select Copy Coordinates to Clipboard
o Paste them somewhere and choose

either row (they should be about the
same)

o Enter a Latitude and Longitude for the 4 gages found in the 2D Flow Area using the format:

* Make sure to leave an extra blank line at the end!

o For this tutorial the Coordinates are listed here:

Gage Latitude Longitude

BDL 2012154.86014 326091.04372

FAR 2082421.16365 365397.77488

NES 2071093.97205 359607.937664

TRB 2044957.56598 347579.767861

Gage: SBP Lat: 616878.502335 Lon: 4293808.60825

15 | P a g e

ENTER OBS_PATHS.TXT DATA

For more information on the text file go to the obs_path Text File section.

Now tell the code where to look for the observed data. Each gage needs an observed data path, and currently, all
the observed data need to be in the same DSS file.

The Observed DSS data file can be found in the working directory in the Tutorial folder, it is called
BaldCreekObservedData.dss

Use the DSS file to fill out the obs_paths.txt file found in the working directory.

o Enter the pathnames in the following format:

* Again, make sure to leave an extra blank line at the end!

o For the tutorial, the paths are listed here:

Gage Pathname

BDL /BDL/BELOW THE DAM/STAGE/01JAN1999/1HOUR/EXAMPLE DATA/

FAR /FAR/FARTHEST POINT/STAGE/01JAN1999/1HOUR/EXAMPLE DATA/

NES /NES/NEAR THE STREAM/STAGE/01JAN1999/1HOUR/EXAMPLE DATA/

TRB /TRB/TRIBUTARY/STAGE/01JAN1999/1HOUR/EXAMPLE DATA/

XSG /XSG/IN-RESERVOIR/STAGE/01JAN1999/1HOUR/EXAMPLE DATA/

Gage: SUT Path: /SUTTER SLOUGH AT COURTLAND/SUT/STAGE/31DEC2005/IR-DAY/USGS/

16 | P a g e

ENTER ONE_DIM_COMP_PATHS.TXT DATA

This is the last text file to fill out. This tells the code where to look for the computed data in a 1D reach.

For more information go to the one_dim_comp_paths Text File section.

Find which cross section to select by following these steps:

o In RAS Mapper, expand the Results tree for the 1D-2D

Refined Grid Plan

 Expand Geometry

 Select XS

 Left Click on XS

 Zoom in on the XSG gage (on the XS)

 Select the pointer tool

 Right click the Cross Section which is on

the gage

 A pop-up will appear and has the name

of the XS node

Then find the DSS pathname, which can be done by selecting the DSS button in the main RAS window, then

navigating to the correct path.

o Use the following format to enter the pathname:

* Again, make sure to leave an extra blank line at the end!

The path for this tutorial is: /BALD EAGLE CR. LOCK HAVEN/103189/STAGE/%s/%s/%s/

The %s for the last three allow the code to enter the appropriate path parts which correspond to the simulation
options (time window, hydrograph output interval, and plan short ID)

Gage: SSS Path: /STEAMBOAT SLOUGH SAC TO SUTTER/16027.84/STAGE/%s/%s/%s/

17 | P a g e

MODIFY PY_HDF_DSS.PY PREAMBLE

The description of the different parts of the preamble are found in the Main Code section.

Open the pyHDF_DSS.py python script in the working directory.

Now, change 5 lines in the preamble under “# User Input”

HDF_FILENAME

This will correspond to the plan file where the data reside. In this case, it’s the 1D-2D Refined Grid plan which has

extension ‘.p15’.

If the example projects folder is located in the Documents folder then this line will look like this:

hdf_filename = r’C:/Users/lt/Documents /Example Projects/2D Unsteady Flow Hydraulics/BaldEagleCrkMulti2D/BaldEagleDamBrk.p15.hdf’

Be sure to use an r before the quote, this avoids escape characters in the filename.

OBS_DSS

This is the observed data DSS file which will be used to make the observed v. computed plots.

For this tutorial, it will be located in the working directory (where the download package was installed) in the

Tutorial folder. If the working directory is C:/Documents/HaDtoPy then the obs_dss line will look like this:

obs_dss = r'C:/Users/lt/Documents/HaDtoPy/Tutorial/BaldCreekObservedData.dss'

Again, be sure to use an r before the quote, this avoids escape characters in the filename.

TWOD_DSS

The twoD_dss.dss file is where the code will store the 2D results as a DSS element.

For this tutorial, it will be located in the working directory in the Tutorial folder, as well. Similar to above, it will

look like:

twoD_dss = r’C:/Users/lt/Documents/HaDtoPy/Tutorial/BaldCreek2D.dss’

Again, be sure to use an r before the quote, this avoids escape characters in the filename.

18 | P a g e

PLOT_DIR

The plot directory, or plot_dir, is the folder where the resulting figures will go. Each time the code is run, it will

create a folder with the RAS plan short ID as the folder name, then output printed graphs (*.png) with the gage

name as the image name within that folder.

This folder can go wherever. This is an example of where this could go:

plot_dir = r'C:/Users/lt/Documents/HaDtoPy/Figures'

Again, be sure to use an r before the quote, this avoids escape characters in the filename.

For this tutorial, if the above path were used (with the appropriate username, instead of ‘lt’) the plot for XSG

would be in this path: C:/Users/lt/Documents/HaDtoPy/Figures/1D-2D Refined Grid/XSG.png

RUN THE CODE!

Once the pyHDF_DSS.py script is run, it will produce 5 plots in whichever directory is chosen. After the script has

run, view the plots by navigating to the plot directory in file explorer.

VIEWING THE PLOTS INTERACTIVELY WITH GIS

(Optional) This is a quick walk-through of how one would go about making the plots appear spatially in an

interactive fashion.

The screenshots in this section have shapefiles that are not included in the HaD to Py download, but are easily

exported from RAS Mapper (i.e. the 2D Area and the 1D Reach and Cross Sections). This section is shown in

ArcMap but the same task can be accomplished in QGIS, a free and open-source GIS platform.

19 | P a g e

Above is the layout of the gages, and the RAS geometry.

Looking at the attribute table of the Tutorial Gages (the BaldEagleGages shapefile found in the Tutorial folder

within the working directory), there’s the Images field which has the html code for the gage plot.

In order to change these field attributes, begin editing by Selecting Editor> Start

Editing. This allows editing each attributes Image field individually.

For each image, modify the highlighted text in the code below to match the file location of the plot:

Once all of the fields are changed, just select Stop Editing and Save Edits.

Now to get the popups in ArcMap!

20 | P a g e

Right-click on the BaldEagleGages layer (see left

figure) in the Table of Contents (TOC) and select

Properties…

Navigate to the Fields tab, and uncheck everything but StationID and Image (this makes the pop-up less cluttered).

Navigate to the HTML Popup tab, and check the “Show content for this layer using the HTML Popup tool” box, and

activate the “As a table of the visible fields” radio button, and check the “Hide field name column” box.

Press Ok and return to the regular GIS screen. Select the HTML Popup tool:

21 | P a g e

Now, with a click on the points in the BaldEagleGages shapefile, a popup will appear which has the stationID and

the plot.

Below is an example of what a couple of open popups would look like.

	Introduction
	Requirements
	Download Package Contents and Description

	Instructions
	Concept
	File Requirements
	Python Modules Required
	Jython Files for HEC-DSS
	storeDSSdata.py
	getDSSdata.py

	obs_path Text File
	one_dim_comp_paths Text File
	two_dim_coords Text File
	DSS_data_input Text File
	DSS_data_output Text File
	ras_2D_cells Text File

	Main Code
	hdf_filename
	obs_dss
	twoD_dss
	plot_dir

	Tutorial Example
	Open RAS Project
	Run RAS Project
	Display Gage Shapefile
	Enter two_dim_coords.txt Data
	Enter obs_paths.txt Data
	Enter one_dim_comp_paths.txt Data
	Modify py_HDF_DSS.py Preamble
	hdf_filename
	obs_dss
	twoD_dss
	plot_dir

	Run the Code!
	Viewing the Plots Interactively with GIS

