

Spring Snowmelt Recession Ecology

- The one time annually where high resources are coupled with predictable flows
- Results in high
 biodiversity
 (Gasith & Resh 1999)

Yarnell, S.M., J.H. Viers and J.F. Mount. 2010. BioScience 60:114-127.

Regulated Flow Regimes

Quantifying the Flow Recession

Quantifying the Spring Recession Rate: Unregulated Basins in the Sierra Nevada

Daily recession rates are consistent across basins and elevations

Daily Percent Change in Discharge

$$Q = Q_0 \times e^{kt}$$
$$-k = \frac{dQ/dt}{Q}$$

Daily recession rates:

-0.12

-0.14

- 1) decrease during the recession (on average from 8 to 4%),
- 2) are limited (typically < 20%)

Calculating a Spring Recession Flow Regime

Requires knowledge of:

- hydrology of the regulated river
- hydrology of an analogous unregulated river
- limitations of the regulated system infrastructure
- hydraulic-related thresholds for aquatic species of interest (e.g. maximum allowable ramping rates)
- representative channel morphology of the regulated river

Rubicon River Example

- Regulated bypass reach below high-elevation reservoir
- Regulated flows dominated by spring spills and baseflow
- Unregulated NF American in same watershed

Use 2D hydrodynamic model to evaluate flow effects on native species

Rubicon River Example

- Start the recession from spill at 700 cfs when gain control of the system
- Decrease flows at rates similar to the natural rates (8-5%/day)
- Limit steps to <20%/day
- Reach the minimum instream flow within 45 days

Calcu	ated Recession Flows Flow S		Schedule	
Day	Flow	Step % change	Flow	Step % change
1	700		700	
2	644	0.080	600	0.143
3	594	0.079	600	0.000
4	547	0.078	600	0.000
5	466	0.077	500	0.167
			•••	
42	40	0.052	40	0.000
43	38	0.051	35	0.125
44	36	0.051	35	0.000
45	35	0.050	35	0.000

Modeled Flow Recession Scenarios

Four Scenarios:

Average Spring Rate = 8%-4%

Constant Low = 9.5%

Constant Medium = 15%

Maximum Observed in Nature = 30%

Foothill Yellow-legged Frog Breeding Habitat

- Frogs lay egg masses in very low velocity locations at 20-40 cm depth
- 3 weeks required for egg masses to hatch and tadpoles to grow big enough to follow receding water's edge
- Flow recession of
 10 cm per week will limit desiccation of eggs

(Bondi C.B., S.M. Yarnell and A.J. Lind. 2013.)

Spatial Niche Analysis

Depth and velocity guilds for aquatic species of interest in the PCWA Middle Fork Project

Example:
Rainbow Trout
Spawning
Juvenile Hardhead

Fry = Rainbow Trout, RBT = Rainbow Trout, HH = Hardhead, PM = Sacramento Pikeminnow, Spaw n = Trout Spawning, S = Sacramento, FYLF = Foothill Yellow - Legged Frog. Cal = California. Spk = Speckled. Juv = Juvenile. Adt = Adult

Modeled Flow Recession Scenarios

FYLF eggmasses – 30 cm average depth/3 weeks to hatch

Modeled Flow Recession Scenarios

FYLF – 3 weeks; Native spring spawning fish – 2-4 weeks

Spatial Niche Analysis

Percent of modeled nodes within each spatial niche at each of five modeled discharges (725 cfs – 32 cfs).

Simpson's Diversity Index calculated from the distribution of spatial niches at each of five modeled discharges

Implications for Regulated Systems

- Restoration of the spring recession achievable by modeling rates of change to increase hydraulic habitat diversity
- Hydraulic diversity in both space and time is necessary to support the full complement of native aquatic species
- Key to diverse hydraulic habitat mosaic is to shift relatively slowly through time – allow for development of eggs and larvae within a spatial niche before the niche disappears

Application in Regulated Systems

Recession rates can be modeled as down-ramping rates from spill or an ecological flow pulse

Examples in California:

- South Fork San Joaquin River
- McCloud River
- North Fork Feather Cresta Reach
- Middle Fork American River
- Upper Yuba Rivers

Table 6. Lower flow spill cessation schedule in the South Yuba River downstream of Lake Spaulding Dam.

Spaulding Dam.			
Target Flow, +/- 20% ¹	Target Number of Days to Hold Target Flows	of Days to Hold Target Flows	
250 efs	l days		
200 cfs	2 days		
150 cfs	2 days		
125 cfs	3 days		
100 cfs	3 days		
75 efs	4 days		
60 efs	4 days		
50 cfs ²	2 days		

Once the facility modifications (discussed later in this measure) are completed, Target Flows at or below 75 cfs will be ± 10%.

If the Minimum Streamflow in this measure is greater than 50 cfs, the spill cessation will stop at the Minimum Streamflow.

Acknowledgements

- Funding: California Energy Commission
- Collaborators: US Forest Service, Placer County Water Agency, Ryan Peek, Craig Addley

