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The decline of species worldwide is both alarming and difficult to document due to a lack of reliable
information on the geospatial extent and corresponding status of a given taxon. Freshwater habitats are
disproportionately degraded globally with resultant declines in populations in freshwater fishes and
subsequent retractions in biogeographic ranges. Conservation challenges in freshwater are compounded
because aquatic taxa are inherently difficult to map. We addressed this problem for California freshwater
fishes by developing the software and underlying database. The software consists of a Python program,
database, and suite of tools using ESRI ArcGIS scripting interfaces to translate species range data into an
electronic record set of occurrences housed in Microsoft Access. The system was designed to capture,
store, map, and report on the spatial and temporal dynamics of targeted species by using standard spatial
units as primary indexing objects to meet current natural resource management objectives. However, the
software not only tracks the provenance of underlying empirical records through space and time, but also
is robust to inferential modeling results and expert knowledge, which allows for future empirical dis-
covery and validation. After importing and standardizing 274,555 records from 154 data layers, we found
that most existing records are highly concentrated spatially, representing only 39% of the mapping
domain. We also determined that most empirical records are skewed toward recreational fisheries, with
few records documenting the range of native species found in California. Future biogeographic mapping
efforts will be aided by the baseline data and updated range maps contained in the database. Although
the system is currently used for the inventory and mapping of native freshwater fish species in California,
the underlying informatics framework is agnostic to biological taxonomy or spatial realm allowing other
to adapt the computer code and database for their own needs.

© 2013 Elsevier Ltd. All rights reserved.

Software availability

Name of software: PISCES
Developer: Nicholas Santos

Program language: Python, SQL
Program size: 6.5 GB (including supporting data)

Contact information: Nicholas Santos — nrsantos@ucdavis.edu; +1

530 754 9362
Year first available: 2012

Availability and cost: Open source licensed under Creative

1. Introduction

1.1. Background

Commons Attribution NonCommercial ShareAlike 3.0

Unported license. Software and data available at https://
bitbucket.org/nickrsan/pisces

* Corresponding author. Tel.: +1 530 754 9362.
E-mail address: nrsantos@ucdavis.edu (N.R. Santos).

Global environmental change from human activities is both
widespread and rapid (Millenium Ecosystem Assessment, 2005).
This is especially true in freshwater ecosystems, which are
disproportionately affected by human activities (Dudgeon et al.,
2006). Freshwater ecosystems are affected by pollution, water
diversion and flood protection infrastructure, habitat alteration,
and invasive species, among many stressors. Further, freshwater
ecosystems and freshwater supplies are increasingly vulnerable to
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the combined effects of human abstraction and hydroclimatic
alteration (Vorosmarty et al., 2000).

Efforts to minimize the negative effects of anthropogenic change
through conservation often rely on maps to depict subjects of in-
terest (Wilson et al., 2007), such as the location of a species or a
collection of species, or alternately places of refuge, such as a park
or preserve. To initiate a process or program to conserve a species
or a suite of species, it is necessary to know where to act. While this
need is common in resource management, few systematic tools
have been developed to collect, store, and map aquatic biodiversity
through space and time. This may be due to the inherent challenges
of mapping ranges of aquatic species including: animals in aqueous
environments are often difficult to detect; methods of detection are
comparatively poor; field observations are highly localized; present
day distributions are confounded by human introductions; and
human activities have extirpated species from suitable habitats
(Naiman and Dudgeon, 2011; Nel et al., 2009; Pittock et al., 2008;
Strayer and Dudgeon, 2010; Thieme et al., 2007; Viers and
Rheinheimer, 2011; Vorosmarty et al, 2010). This paper in-
troduces a software system designed to function within these
constraints to produce high resolution, easily updated range maps
for resource managers.

1.2. California

Like other regions of the Mediterranean Biome, California is
disproportionately impacted by human activities (Grantham et al.,
2010; Underwood et al., 2009). The state has the combined chal-
lenges of being ecologically unique — 82% of fish taxa are regionally
endemic (Moyle et al., 2011) — and containing 38 million people.
Freshwater ecosystems of California are threatened by several
compounding factors, including but not limited to river regulation,
pollution, and invasive species (Marchetti et al., 2004). The number
of the state’s native fish taxa in decline is worrisome. Of 129 native
fish taxa 83% of are in sharp decline or have already gone extinct
(Moyle et al., 2011). Indicative of the critical nature of this problem
is the impending extinction of several California runs of anadro-
mous salmonid (Katz et al., 2012).

The United States Department of Agriculture Forest Service (FS)
is California’s largest land holder, administering 9,526,000 ha
across 18 National Forests, accounting for approximately 20% of the
state’s land surface. Management objectives, coupled with regula-
tory mandates, such as the federal Endangered Species Act, obligate
the FS to identify, catalog, monitor and account for aquatic species.
To date, FS and other resource managers have relied on digital maps
generated as part of a statewide mapping effort of California fishes
conducted in 1998 (Moyle and Randall, 1998). While these maps
have proved helpful in better understanding the distribution of
fishes in California, they were developed with early geographic
information system (GIS) technologies at coarse scales and did not
portray empirical data but instead were created using expert
knowledge. Furthermore, these maps could not be readily updated
as new information became available or combined with other
mapping approaches, such as inferential spatial modeling — issues
that afflict many similar efforts (Graham and Hijmans, 2006).

1.3. PISCES

To more effectively understand and manage the sensitive fishes
of California’s National Forests, we developed a GIS dependent
database and accompanying software. The software, termed PISCES,
was intended to robustly manage mapping efforts of sensitive fish
species distributions across forests in ways that previous efforts
could not. Designed as a decision support system for resource
managers, PISCES incorporates and catalogs disparate data types of

empirical and inferred species observations. Subsequent encoding
of these observations relies on a standardized, yet generic, data
framework that overcomes issues of spatial scale, temporal discon-
tinuity, data format discrepancies, and regional context.

Standard outputs from PISCES map or tabulate phenomena that
allow managers to identify species ranges, patterns of biodiversity,
and areas of where biological data is lacking. Although intended to
solve acute management problems associated with California’s
sensitive fish species on FS lands, the PISCES platform, with its
enhanced GIS database and data provenance and transaction ca-
pabilities, can be applied to other natural resource management
systems.

PISCES fits in with a general class of research software that at-
tempts to organize, store, and present disparate sets of data (See
(Guzman et al., 2013; Horsburgh et al., 2009; Rangel et al., 2010;
Souza Mufioz et al., 2011; Villa et al., 2009)) — a common need as
organizations gather overlapping data in different forms. This very
basic question of “where” is foundational to much other work in
ecology and environmental science and is the reason we have GIS.
Systems such as PISCES aid in that question of where by translating,
organizing, and collecting data into functional units with problem-
domain specific tools. In fact, while our instance of PISCES is Cali-
fornia focused, the software and database are a generalized system
for tracking and analyzing species range anywhere using a pre-
defined set of zones.

1.4. Design requirements

We imposed several formal design requirements on the devel-
opment of PISCES that were intended to address issues of species
data collection, storage, and analysis within existing desktop GIS
software.

1. Resource managers are often in a standalone computing
environment with “stock” desktop software; thus, outcome
must be serverless and portable and not require additional
investment in hardware or software. PISCES uses Python 2.6,
ArcGIS and a Microsoft Access geodatabase for data processing
and storage.

2. Resource managers collect new information regularly; thus,
data and results must be dynamic. PISCES can process and
import many new datasets and will update maps and tables as
data are updated.

3. Resource managers are not database engineers; thus, data
must be easily updateable and flexible to unknown and non-
standard data formats. Data import occurs via extensible
classes that can adapt to datasets regardless of format, design,
scale, quality, or quantity. New classes can be added as needed to
handle foreign data.

4. Resource managers are faced with ever-changing mandates
and management challenges; thus, resultant frameworks
must be compatible with future questions and needs. Flexible
configuration and callback functions allow for runtime cus-
tomization of maps to meet future needs. Stock functions and
map configurations handle major outputs of interest and new
functions can be added.

5. Resource managers have inherent, place-based knowledge;
thus, software must be able to capture verbal and written
accounts. PISCES includes tools that support interactive range
viewing, input, and editing with experts in ArcMap 10 to capture
data not currently in any file.

6. Resource managers are human and mistakes can happen;
thus, all data and changes must be traceable. PISCES logs all
transactions and stores all inputs unmodified so that changes
can be traced. In many cases, a change can be reverted.
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We evaluated the suitability of existing software and databases
to meet our needs and found no ready solutions. Existing global
methods for storing and containing aquatic species range data
either were not domain specific, not high enough resolution, or did
not cover the entire domain extent (Kaschner et al., 2010). Existing
California-oriented systems frequently were not reproducible, did
not have a mechanism to add data where empirical data is sparse or
missing, were missing appropriate analysis tools, or relied on
generalized GIS workflows rather than a unified system of range
tracking, provenance, and mapping (Biogeographic Data Branch,
2011; BIOS, 2011a; Hijmans et al., 2000; Olson, 1997). Finally,
existing systems frequently do not allow for true integration of
empirical and expert data or were focused primarily on inferential
modeling based on existing data instead of development and
storage of range data.

For almost as long as biologists have had access to computers,
we have been developing software systems to understand species
range — GIS is, at its basic level, designed to help us understand this
basic question of “where” some phenomenon occurs (Kaschner
et al., 2010; Scott et al., 1987). Each system involves a series of
tradeoffs regarding what can be represented with the available
resources (Hurlbert and White, 2005; Jetz et al., 2012). Our software
is the next iteration in such a series of databases and tools and
reflects our set of design requirements.

2. Methods

PISCES is a system to collect, process, store, and output species
presence data. It is designed to aggregate and convert diverse
spatial data for California native fish species to United States
Geological Survey Hydrologic Unit Code 12 (HUC12) subwatersheds
(henceforth referred to as mapping units, see http://water.usgs.gov/
GIS/huc.html for more information), but can be adapted for other
areal units. For geospatial operations PISCES uses the arcpy site
package (library) for Python 2.6.5 and Microsoft Access 2010 via the
pyodbc package for database interfacing.

The software was developed to transform, store, and output
geospatial data imported from third party sources. The database
was seeded by capturing expert knowledge data with purpose-built
tools. All imported and transformed data was quality controlled by
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species experts. Range maps for 67 of California’s 129 native fish
taxa were produced. Additionally, summary map outputs allow
visual representation of data analysis and spatial patterns in aquatic
biodiversity. Fig. 1 shows the flow of data within and through
PISCES.

2.1. Implementation

2.1.1. Storage

PISCES tracks species ranges through individual presence re-
cords for species in each watershed. Each presence record in PISCES
includes foreign keys to the mapping unit, taxon, origin dataset,
and a presence type along with any other relevant metadata spe-
cific to that record. PISCES presence classifications include whether
the data are historic or current, for native or translocated range, and
whether the data source is empirical, model-generated or expert
knowledge. PISCES uses these attributes to layer and separate data
upon output. Table 1 describes the fields PISCES stores for each
presence record.

Presence records can be assigned to groups, such as our “quality
controlled” dataset — a set of records that has been manually
reviewed by species experts and is considered authoritative. PISCES
also groups taxa, such as native taxa, or taxa of interest for specific
analyses (e.g., by taxonomic family, or geographic region). Using
these metadata, users can filter PISCES outputs to only include
selected taxa and/or data types.

2.1.2. Inputs and processing

PISCES can natively import and store spatial or tabular data that
describes the presence of a tracked taxon. By using a built-in
extract, transform, and load (ETL) mechanism, PISCES is exten-
sible to handle datasets regardless of design, scale, format, origin, or
reliability through the use of a set of Python classes that handle
increasing complexity and differing design. Core classes called
“input filters” handle the most common data transformations and
tracking, such as translation of spatial data to mapping unit iden-
tifiers, field mapping for important metadata, and pre-conversion
of inputs to match expected formats. The core input filter classes
include multiple extension points, including subclassing and
custom method handlers for fields.

Presence
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Mapper
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Fig. 1. PISCES schematic. Data flows in through multiple pathways, is standardized to the database, and is output via multiple pathways for analysis and mapping.
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Table 1
Schema for a PISCES Observation. Observations relate species, mapping units and
presence types and include appropriate metadata.

Field name MS access Description
data type

OBJECTID AutoNumber Primary key

Set_ID Number The Observation_Set that this
Observation is associated with.
Many Observations to one
Observation_Set

Species_ID Text The Species FID that this record
describes

Zone_ID Text Mapping Unit (HUC12) ID. Many
Observations to one Zone_ID

Presence_Type Number The type of presence (observed,
expert knowledge, modeled, current,
historic, etc.) of a species

IF_Method Number The code path that processed this
observation from source data

Longitude Text Optional. Longitude if this
observation came from point data

Latitude Text Optional. Latitude if this observation
came from point data

Survey_Method Text Optional. Type of surveying used
to capture and identify the species

Notes Memo Additional information about the
record added by operator

Observation_Date Text Date of the observation, as noted in
the source data

Date_Added Date/Time The date/time that this record was
added to PISCES

Other_Data Memo Semicolon separated other fields of

interest captured by input filter

In order to generate range maps from discrete records of
observation and provide an appropriate level of uncertainty to data
whose validity changes with time, input filters transform data,
regardless of geometry, to a collection of mapping units. This
method affords PISCES additional power, but also places limitations
on the results. All accessible PISCES range data are in the form of
these mapping unit presence records.

PISCES is able to track all changes to data, from import of new
data to modifications of existing data via metadata attributes and a
built-in transaction system. Data changes made using the built-in
tools can be retroactively reverted to prior states if desired.
Table 2 contains a summary of the data we have imported into
PISCES, including data covering all National Forests within Cali-
fornia and multiple statewide datasets.

2.1.3. Expert-verified range maps

Input filters allow for high volume data translation from existing
datasets into PISCES, but have little capacity to validate, expand, or
infer ranges as an expert can. Depending on source data design and
method of translation to our mapping unit, stock input filters often
produce overestimates of range in some places and incomplete
records in others. To control for this problem, we developed a set of
tools that provide a viewing and editing interface for experts within
ArcMap 10. The editing workflow most typically begins with
loading the PISCES export (see next section) of a taxon’s range into
ArcMap along with other statewide geographic data. Using the
built-in selection tools users select mapping units to add, remove or
query, which are then passed into PISCES tools to make modifica-
tions to underlying data records. Upon completion of a given taxon,
records represented by that defined range are added to a Quality
Controlled (referred to as QC) dataset in PISCES that contains expert
validated range data.

At the time of this writing, the primary experts involved in the
PISCES data validation were Jacob Katz and Peter Moyle, with input

Table 2

Summary of PISCES records by source.
Group # QC # Datasets  # Records

records included
United States Forest Service 24398 36 148,957
Expert data 14,201 1 19,963
Moyle and Randall (1998) 8140 88 92,347
Federal Energy Regulatory 1008 6 5601
Commission (FERC) Surveys

Trout unlimited® 572 5 872
California Department of Fish 511 1 1498

and Wildlife, California
Natural Diversity Database (CNDDB)”
California Department of Fish 241 2 2106
and Wildlife, Biogeographic
Information & Observation
System (BIOS)“

US National Marine Fisheries 221 6 1159
Service (NMFS) Salmonid data“
US Environmental Protection 62 1 464

Agency Environmental Monitoring
and Assessment Program (EMAP) data®
Various supporting data’ 6 6 12

2 (TU, 2011).

b (Biogeographic Data Branch, 2011).

¢ (BIOS, 2011a,b,c).

d (Schick et al., 2005).

€ (EMAP, 2006).

f Datasets and reports from numerous agencies. For a full listing, see observa-
tions.gdb in Supplementary data.

from Ron Yoshiyama, Molly Stevens, Bjorn Erickson, and Joe
Kiernan for specific taxa. Certain regions of California were verified
by United States Forest Service Field Office Staff when possible.
Many of the imported datasets had some or all of their data
controlled by experts as well, but because this too was subjected to
the initial editing process, PISCES was agnostic to those edits.

Validation by experts was based on numerous factors, depending
on the taxon. In many cases, experts had personal experience with
taxa in regions that computer-accessible datasets do not currently
track. In other cases, life history characteristics of a taxon were used
and compared with regional knowledge of streams. Information on
the biology and status of each species was derived from detailed
reviews in (Moyle et al., 2008, 2011; Moyle, 2002; Moyle et al., 2013;
Moyle et al., 1995), collection of scientific literature and agency re-
ports, and by personal communications with biologists.

For a full accounting of importing and editing data in PISCES,
please see Appendix A: Data Flow through PISCES.

2.14. Mapping

The mapping code contained in PISCES is designed as a flexible
component to allow for outputs supporting differing management
and mapping needs. For example, PISCES does not contain code to
generate a single, specific map. Rather, the code contains classes
and supporting functions that expand a single “mapping configu-
ration” into as many maps as necessary. Users create maps via
configurations that specify general parameters such as title, layer
names, and template ESRI Map Documents. These parameters are
translated into an instance of the fish_map class (see Fig. 2). fish_-
maps have a one-to-many relationship with the map_layer class,
which stores the layer-specific data. PISCES uses this relationship to
display all data types available for a selected taxon in a single map
in the default mapping configuration.

The key parameters behind each layer are the queries and
callback functions, implemented as map_layer and custom_query
classes, which allow significant flexibility in data display within the
confines of standard ArcGIS capabilities. map_layers contain
Microsoft Access compatible SQL queries that return a set of
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fish_map

List of map_layer class objects

+map_title: String

The title to use to replace the {title}

variable in the map document. Accepts inline
replacement variables.

+query_set: ID
the set in the database that defines this map

+base_mxd: String
References the template file

+callback: String
+callback_args: String

+setup(queries:List)
Creates layers and performs basic map-wide
operations

+populate(db_cursor:pyodbc.Cursor)
Intiates the populate method on each map_layer
instance.

+make_layers(zone_layer:String,
db_cursor:pyodbc.Cursor,
cache_layer_flag:boolean=True,
unique_layer_name:boolean=False)

Handles processing of the map_layer instances.

+generate(ddp:boolean=False)

Composes the map. Opens the template, inserts
layers, applies symbology, sets map extent, and
replaces variables in map text.

+export_maps(mxd:arcpy.mapping.MapDocument)
Outputs composed maps in multiple formats as

specified in preferences: mxds, pdfs, pngs.

Also exports submaps via ArcGIS Data Driven

Pages functionality.

+export_web_layers()

Exports zipped shapefiles and kmls for web
distribution. This is a fish_map method because
in the case of the kmll files, they must be
composed with symbology before exporting

callbacks.py

+map_layers: List = [map_layer,] l_l_ +zones: List = [String,]

map_layer

The list of HUC12 mapping units that will compose this
layer

+aux_attrs: List = [pyodbc.Result,]
Per zone attributes for use in callbacks

+cache_file: String
Cache file on disk

+symbology_lyr: String
The path of the .lyr file to obtain this layer's symbology
from

+layer_name: arpcy.featureLayer
The assembled ArcGIS feature layer

+composed_layer: arcpy.mapping.Layer
The data and symbology in one composed layer for exporting

+parent_map: fish_map = parent
The parent fish_map class for reference

1
— +custom_query

+populate(db_cursor:pyodbc.Cursor)
Runs the custom_query and populates zones list with HUC 12
IDs

+make(zone_layer,db_cursor)
Creates an arcpy Feature Layer from the zones and calls the
callback, if specified.

L custom_query

+query_string: String
The Microsoft Access compatible SQL query that returns HUC
12 IDs to generate the parent layer

+rank: Int
Layer stacking order in the table of contents

+ID: Int
The database primary key

+bind_var: String

If we have a fish (or other value) to use as a bind
variable. Map configurations that are expanded to multiple
maps will have one.

+layer_name: String
1 The name to use in the table of contents

def my_callback(zones_layer:String,
db_cursor:pyodbc.Cursor,
args:List,
parent_layer:PISCES.mapping.map_layer)

+layer_file: String
References an ArcGIS Layer file on disk
= +callback: String

Indicates a function (by name) within the callbacks module
to run as a callback. It will be looked up and executed

automatically)

+callback_args: Iterable

callback_args is passed in as a string with values
separated by "::" - these values will be split and passed
to the callback function as a List, along with other
standard parameters that callback functions must accept

+process_bind()

Replaces {bind} markers in query strings with the bind
value in a way that doesn’t require knowing how many
markers exist to pass to pyodbc

Fig. 2. Simplified UML diagram of the mapping classes. Noncritical class elements are not shown.

mapping unit identifiers. map_layer methods translate these IDs
into a composed spatial layer of those mapping units and symbolize
it according to the parameters in the map configuration. In the case
of species range maps, SQL queries of the following structure are
most common:

select distinct Zone_ID from Observations where Species_ID = ?
and Presence_Type = 3.

The “?” indicates a bind value — a runtime parameter for the
query that allows us to pass in the species id for each map. In this
case a Presence_Type of 3 limits the resulting layer to expert
knowledge data, but identifiers of other data types are used in each
layer in the default mapping configurations. PISCES composes a
complete range map by combining layers representing each data
type of interest for a species into a single map.
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When a callback function is specified on a map_layer, the
generated spatial layer is passed to the callback function, which
returns the final layer to be added to the map. As a result, the
callback has full control over the final layer and can change the data
type or features, add fields, or otherwise modify the contents.
Common implementations of callbacks include generating species
diversity and assemblage information by mapping unit. Further,
after the callback, the fish_map no longer assumes the layer con-
tains mapping units, so once the layer is passed off, callbacks have
full flexibility to change outputs — even to other spatial units.

2.1.5. Outputs

Primary outputs from PISCES are static digital maps, but PISCES
can also output locational matrices of presence/absence, composed
spatial layers, and reports. To accomplish map output functions,
PISCES uses ArcGIS’ native mapping capabilities as per the arcpy.-
mapping Python module, and composes maps from stored templates.
Outputs include the composed map as an ArcGIS Map Document
(MXD), static maps at multiple scales in PNG and PDF formats, and
web-ready versions of the underlying layers as symbolized KMLs and
zipped ESRI Shapefiles. By default, all generated features are cached
locally for use in other analyses by researchers and managers.

2.1.6. Version control and data management

The PISCES software and data are managed within a Mercurial
repository for complete versioning and data management. Inter-
nally, PISCES maintains its own simplified transaction system that
stores input commands that would change data, messages provided
by the editor of the data justifying the change, and copies of deleted
or changed data. This transaction system prevents data loss be-
tween commits to Mercurial and provides a partial history of
changes for each taxon.

2.2. Methods for key callbacks

2.2.1. Richness functions

Aside from species range maps, a common data need from
PISCES is mapping unit level diversity information. PISCES ad-
dresses this need through a generic callback that takes a SQL query,
an output datatype and a field name as parameters. It creates a field
of the specified output datatype on the spatial data layer and runs
that passed in query for every individual mapping unit in the
map_layer.

The most common form of this query is:

select count(*) as col_value from (select distinct Observations.S-
pecies_ID from Observations where Observations.Presence_Type in
(1,3,6,7,9) and Observations.Zone_ID = ?)

This query returns the number of taxa for which PISCES contains
data indicating current presence in the mapping unit being pro-
cessed. When using this callback, it will be run with the mapping
unit identifier as the bind variable, replacing the “?,” for every
mapping unit in California. In this particular query, Presence_Type of
1,3,6,7, and 9 indicate current presence in that mapping unit.
Additional limiting clauses are often added to queries, such as to
impart designation for particular species groups or originating
datasets. For more complicated measures of biodiversity, such as
Jaccard Distance (a mathematical measure of similarity), we
created new callbacks, and hooks are available in the code for new
analysis callbacks as future needs arise. See Supplementary
documents for the code for all callbacks.

2.3. Data assessment

For the purposes of this paper and assessing the current state
of fish taxa range data, we developed a separate script to

compare the existing Moyle and Randall (1998) data with our
new refined range map. We also created a PISCES map set that
shows the count of empirical observations in each mapping unit,
which highlights gaps in sampling and conversion of historical
records to digital formats.

2.3.1. Comparison of PISCES to Moyle and Randall, 1998

To assess potential changes in distributional data between
Moyle and Randall (1998) and current PISCES ranges, we examined
the Moyle and Randall ranges for which we also had quality-
controlled PISCES data (n = 19).

For each taxon, we executed queries and overlap functions to
determine:

1. quality controlled area of mapping units that make up the Moyle
and Randall polygon;

2. percent overlap of the final PISCES range with Moyle and Ran-
dall polygon

3. percent overlap from the perspective of the PISCES range

4, percent overlap from the perspective of the Moyle and Randall
polygon

5. change in location of range centroid from Moyle and Randall
polygon to PISCES polygon

Using these data, we calculated summary statistics for change in
range, change in centroid location, and percent overlap of the
Moyle and Randall and PISCES ranges. Further, we plotted logio
change in centroid location versus logip change in range area to
visualize the overall change in current species range between these
two datasets.

2.3.2. Data gaps

To identify potential data gaps, we mapped the distribution of
observations throughout California. This map contained a single
layer with the following query:

select distinct Zone_ID from Observations where Presence_Type in
(1,7,9,10).

Presence_Types of 1, 7,9, and 10 indicate records with empirical
observations contained in PISCES to back them up, so this layer will
only contain mapping units with at least one empirical observation.
This map also configures this layer to use the Postprocess_Zones
callback (described previously) to execute the query.

select count(*) as col_value from Observations where
Observations.Zone_ID = ? and Observations.Presence_Type in
(1,7,9,10).

This callback with this query will add an integer field to the
generated layer with the number of empirical records for those
mapping units, allowing us to symbolize the layer based upon re-
cord volume and assess the distribution of empirical observations
of species.

3. Results
3.1. PISCES outputs and maps

PISCES contains data for 125 of 129 fish species native to Cali-
fornia. Of 274,224 total records imported to date, 49,298 have been
quality controlled. Expert verified maps of current California dis-
tribution were developed (see Fig. 3) for 67 fish taxa of conserva-
tion concern. Maps of historic distribution of were also developed
for 42 of these 67 taxa. Using the same data underlying the maps,
we have developed alpha diversity per mapping unit — species
richness — maps (see Fig. 4a). This map uses the postprocess_zones
callback. We also developed and ran a separate callback that de-
termines the Jaccard Distance for each mapping unit (see Fig. 4b) as
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Fig. 3. Complete, expert-verified range map for Hardhead showing layering of multiple presence types.

a demonstration of potential analyses that can be run using the
mapping system and data. Jaccard Distance measures similarity of
adjacent populations, allowing us to visually and quantitatively
assess hotspots of native species diversity and endemism.

3.2. Data comparison with Moyle and Randall

California fish species range maps from Moyle and Randall
(1998) were compared with PISCES output range maps for 19
taxa. Table 3 and Fig. 5 contain the full results. The mean change in
range area between Moyle and Randall polygons and PISCES
generated range maps was 175%, with a median change of 53%. The
minimum change was 3.5% and the maximum was 1308% for a
taxon with a small mapped range. The first and third quartiles were
23% and 157%, respectively. The average percent overlap between
the Moyle and Randall range and the PISCES range was 42% with a
sample standard deviation of 23% and a median overlap of 46%. The
minimum overlap was 0.5% and the maximum was 75% with a first
quartile of 29% and a third quartile of 645%. Average centroid
change (i.e., geographic distance between range centers) was

48.5 km with first and third quartiles of 7.9 km and 47.5 km
respectively.

3.3. Empirical data availability

We also assessed the distribution of empirical data for native
fish taxa in California. The state of empirical knowledge is poor,
with only 37.6% (1675) of California HUC12s containing one or more
empirical observations of native fish taxa in our system. This
analysis is limited to the data available to us for PISCES. Within
those 1675 HUC12s, the distribution of empirical observations was
skewed to the low end. Fig. 6 shows the number of empirical re-
cords per HUC12 in PISCES.

4. Discussion
4.1. Effectiveness of approach — comparison to Moyle and Randall

PISCES allows creation of species distributions based upon the
most complete collection of fish data in the state. Moyle and
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Metrics of change in range between Moyle and Randall and PISCES for 19 native California taxa.

21

Common name Scientific name Area Percent Percent overlap Overlap: Moyle Overlap: Centroid Absolute value
change change and Randall PISCES change (%) area change
(sq. km) perspective (%)  perspective (%) (sq. km)
Arroyo chub Gila orcutti -71354 -26.0 487 57.0 77.0 59.6 7135.4
Central Coast coho salmon  Oncorhynchus kisutch -77109 536 275 31.6 68.1 116.3 7710.9
Chum salmon Oncorhynchus keta 2396.1 7692 114 99.2 114 6.4 2396.1
Goose Lake sucker Catostomus occidentalis -134176.7 -99.1 0.5 0.5 56.7 414.0 134176.7
lacusanserinus
Hardhead Mylopharodon conocephalus 3688.1 76 615 79.0 734 17.5 3688.1
Klamath largescale sucker  Catostomus snyderi 1965.9 864 473 92.0 494 19.6 1965.9
Lahontan redside Richardsonius egregius 11448.7 1638 328 89.8 34.0 10.5 11448.7
Mountain sucker Catostomus platyrhynchus 6314.6 150.5 39.7 99.6 39.8 5.7 6314.6
Mountain whitefish Prosopium williamsoni 38914 1142  46.7 100.0 46.7 9.3 38914
Northern green sturgeon Acipenser medirostris 4934.6 295.1 12.6 20.1 253 24 4934.6
Owens sucker Cyprinodon radiosus 6254.5 2234 307 99.4 30.7 355 6254.5
Pacific lamprey Entosphenus tridentata 28693.0 324 753 99.8 754 32.0 28693.0
Reticulate sculpin Cottus perplexus 891.8 1307.7 7.1 9299 7.1 12.2 891.8
Riffle sculpin Cottus gulosus 19688.1 408 65.0 94.8 67.4 84.5 19688.1
River lamprey Lampetra ayresi 2894.6 212 644 86.7 715 6.2 2894.6
Sacramento pikeminnow Ptychocheilus grandis 7182.1 52 66.1 76.2 834 62.4 7182.1
Sacramento tule perch Hysterocarpus traskii traskii —959.5 -3.6 678 79.4 823 10.8 959.5
Western brook lamprey Lampetra richardsoni 15842.5 374 717 99.1 721 119 15842.5
White sturgeon Acipenser transmontanus 13939.2 167.1 309 86.7 325 4.8 13939.2
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Fig. 5. Change in range between Moyle and Randall and PISCES. Y axis is log10 change in range centroid location (km) and X axis is log10 change in range area (m).
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Fig. 6. Distribution and quantity of empirical records in PISCES.

Randall maps provided an important statewide overview but were
too coarse to be of much utility at regional and watershed-level
scales. Though geographically accurate at broad extents (i.e.,
statewide to continental — see WWF Freshwater Ecoregions in
Abell et al., 2008), the Moyle and Randall maps were incapable of
meeting many management needs including ease of revision,
geospatial specificity, and multi-species regional analysis. HUC12
mapping units remain coarse for point-based queries, but allow for
refined range data at a scale useful to local and regional managers.
Further, because we keyed presence records for all species on a
common mapping unit that generalizes multiple locations, PISCES
runs functions and generates metrics that are infeasible to create or
maintain with single-polygon ranges stored in separate files. This
structure has the added benefit of maintaining the integrity and
traceability of the source data for each record and allows multiple
records to verify a species’ presence. The mapping interface with
SQL query layers and callback functions have allowed PISCES’ out-
puts to be rapidly and repeatedly updated as new datasets became
available, imported data was quality controlled, or new needs arose.

The data layering component has proven to be most useful in
conveying species ranges. By separating out the empirical obser-
vations from expert knowledge, and historic from current or

translocated, PISCES maps can at a glance convey current status,
confidence levels in the data, and changes to distribution extent
over time. By allowing expert knowledge data to be visualized on
the same map as other data, PISCES can fill in gaps in empirical data
resulting from sampling biases. Further, by obtaining source data
from resource agencies or other partners that covers empirical
observation and expert knowledge, PISCES refines the known
ranges of species.

Each method for measuring change between Moyle and Randall
and PISCES captured a distinct difference. Magnitude of range
change was given by area change. The percent overlap and centroid
change metrics helped us understand whether a range had shifted.
A perfect overlap between PISCES maps and Moyle and Randall is
impossible because the refined scale of HUC12 boundaries differ
from coarse single polygon maps. Data translation appears to cap
overlap for large ranges in the comparison set at approximately
75%. Smaller ranges are more susceptible to data translation effects,
as can be seen with Reticulate Sculpin (Cottus perplexus, 7% over-
lap), whose range consists of only a few subwatersheds.

Outlier taxa of note are those affected by taxonomic discrep-
ancies. For instance, while Goose Lake Sucker (Catostomus occi-
dentalis lacusanserinus) is mapped as a distinct taxon in PISCES,
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Moyle and Randall subsumed its range into that of the Sacramento
Sucker (Catostomus occidentalis occidentalis). Similarly, the Central
Coast Coho Salmon Evolutionarily Significant Unit (Oncorhynchus
kisutch) is now managed as a distinct unit and is mapped in PISCES
as such. As a result, the change metrics for these taxa are artificially
high, but we chose to retain them in the analysis because they
reflect the refinement capabilities of PISCES. A similar issue existed
for Northern Green Sturgeon (Acipenser medirostris), but we were
able to reliably separate the range from Southern Green Sturgeon in
the Moyle and Randall data, so those range metrics remain
accurate.

4.2. HUC12 advantages and limitations

The use of HUC12 subwatersheds as mapping units was a design
requirement for Forest Service mapping needs. As the designated
mapping unit for our implementation of PISCES, there were several
advantages and limitations.

The primary advantage of HUC12s is the balance they strike
between specificity of location and the need for generalized range
information. PISCES imported empirical data as specific as GPS
point locations from field surveys and as general as the complete
range polygons of Moyle and Randall. This entire range of
geographic data needed to be incorporated into coherent PISCES
range maps. Transformation to HUC12s was a reasonable general-
ization of data for our purposes.

We also found HUC12s to be limiting. The HUC12 approach was
inadequate and nonspecific for especially endemic species with
ranges limited to one lake or stream reach. Similarly, exclusions
based upon instream barriers, such as waterfalls, were difficult to
convey. On the floor of California’s Central Valley, where the
concept of a watershed breaks down due to both lack of topography
and frequent flow diversions, HUC12-based ranges are especially
misleading. Finally, managers accustomed to streamline-based
maps may find polygon ranges difficult to interpret.

4.3. Additional sources of error

We see three principal sources of error inherent in PISCES:
translation errors, mapping unit specificity errors, and expert
judgment errors when empirical data availability is low. We made
every effort to either control or understand our error, but retained
some error. In our data quality control process, we found trans-
lation errors to be the easiest to correct. We visually inspected the
data and resulting records, removing overestimates resulting from
intersecting input GIS datasets with our mapping unit or adding
data for underestimates.

Errors related to our choice of mapping unit, the HUC12 wa-
tersheds, were harder to correct, depending on their particular
manifestation. In Section 4.2, we discussed the limitations of
HUC12s for accuracy purposes, but HUC12s can also be problematic
for how they convey data. As a unit covering all terrain, not just
aquatic resources, HUC12s are useful for conveying a species’ full
range. The 1:24,000 scale of HUC12 units limit inference and
distinction between a given range and supporting specific occur-
rence. That is, in some cases, range maps can appear to as user as if
the data are highly specific for the unit in its entirety, while in re-
ality it conveys a likelihood that varies throughout the unit. While
this limit is not inherently a data error, using range data for pur-
poses of species location should be inferred with caution.

The final principal source of error, expert judgment, is most
difficult to control. Error in expert judgment is often manifested as
differences between the chosen spatial designation of an expert
day to day, even in the presence of rules for range change. Future
iterations of PISCES will have additional tools to counter check

maps for internal consistency and calculate rates of error. Still, due
to the data layering and separation of types in PISCES, the error
related to this cause is somewhat minimized.

4.4. Empirical vs. expert knowledge data

Range maps were developed for a taxon’s entire distribution
within California. We attempted to gather all available geospatial
data, but we obtained much of our data directly from Forest Service
biologists. Despite importation of major statewide datasets from
other state, federal, and resource agencies and organizations, the
empirical data in PISCES shows a systematic sampling bias clus-
tered on FS lands located in the mountainous regions of the state.

That large areas of the state known to be within the native range
of numerous native taxa remain without empirical data points is a
failing of sampling effort or of availability of extant data. We believe
that many of these areas were sampled before advent of desktop
GIS and, as a result, vast amounts of analog data remain in file
cabinets of resource agency field offices throughout the state. Up to
this point in time the effort and expense to bring historical data into
the digital realm has seemed prohibitive. We hope that manage-
ment tools like PISCES, designed to empower resource managers by
making pertinent spatially explicit information available to them,
will encourage efforts to convert analog data to digitally and pub-
lically accessible datasets.

Further research and efforts will be focused on completing
range maps for the rest of California’s native fish taxa and
dissemination of that data. Current outlets include manual distri-
bution to partners, the PISCES website, and the PISCES public
Mercurial repository, but more effective dissemination for use by
GIS professionals and state agencies is forthcoming.

5. Conclusion

Resource management and species conservation is hampered by
insufficient knowledge of where species occur. We developed a
geographic information system dependent database and accom-
panying software that combines expert knowledge with empirical
data to create species range maps from all available data sources.
Subsequent encoding of these records relies on a standardized, yet
generic, data framework that overcomes issues of spatial scale,
temporal discontinuity, data format differences, and regional con-
texts. As such, PISCES is a robust, easily updated system for tracking,
management, and analysis of species ranges.

PISCES contains the most comprehensive collection of data to
date on California’s native fishes. Current data includes complete
expert-verified ranges for 67 of 129 native fish taxa and synthesis
maps that include alpha and beta diversities along with an
empirical data distribution analysis. Most importantly, both the
import and export mechanisms are adaptable so that as new data
become available or new needs arise the system is able to incor-
porate diverse data sources and output the necessary spatial and
tabular products. Although intended to solve acute management
problems associated with California’s sensitive fish species on
Forest Service lands, PISCES — an enhanced GIS with data prove-
nance and transaction capabilities — was easily adapts to the needs
of other environmental phenomena, regions, and resource man-
agement issues.
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Appendices

Supplementary data can be obtained from https://bitbucket.org/
nickrsan/pisces/downloads/EMS_PISCES_Supplement.zip. Supple-
mentary data includes:

1. A full snapshot of the PISCES software and data as well as data
exports of the 19 species analyzed in this paper in PNG, PDF, and
ArcMap Document format (for ArcGIS 10.0 or above).

2. Database relationships diagram.

. Documentation of the database

4, Partial documentation for using the PISCES software (also
available at http://pisces.ucdavis.edu/doc)

5. The code used for the analysis of change between Moyle and
Randall and PISCES

6. ESRI feature classes of the diversity and empirical data used in
Figs. 5 and 6

w

Appendix A: Data flow within and through PISCES

Data processing and flow in PISCES varies based upon source
and type. Existing datasets will be processed by an input filter,
which will perform the ETL, while expert knowledge is processed
and entered by an operator via an ArcGIS toolbox tool. Additionally,
since generated maps and matrices are highly customizable, the
code execution varies. This section follows data additions and
modifications from the perspective of the human running and
interacting with PISCES (the Operator).

Dataset ETL

The first stage of dataset ETL requires human setup and
configuration. First, the Operator copies the dataset to the geo-
database that PISCES checks for new data. The Operator performs
any conversions required to make the dataset geodatabase
compatible (e.g.: CSV to geodatabase table). The Operator then adds
arecord to the table in that database that tracks metadata regarding
importation of new data (PISCES/inputs/new_data.mdb/NewData).
This record requires specification of the taxon of the dataset, or the
keyword “filter,” indicating that the input filter will determine the
taxon for each data record it encounters. “Filter” is the most com-
mon method used in PISCES as most datasets are multi-taxa.

The Operator also specifies the input filter for the new dataset,
creating one if need be. Input filters are a combination of trans-
lation values for taxa ids and the code class that handles the import.
The translation values are stored in table Alt_Codes in the main
PISCES database, with a foreign key to the input filter ID. These
values may be entered manually within Microsoft Access, or the
Operator may use a tool in the PISCES ArcGIS toolbox that preloads
values for the dataset, requiring the Operator to only enter the
PISCES species IDs into the records. The Operator specifies the code
class that handles the import in the input filter definition. This
many input filters to many code classes structure allows for reuse of
code classes and generic import filters that handle a broad set of
translations common to species presence datasets.

Once the Operator has specified the input filter on the dataset’s
record in the NewData table, the final step before importing is to
specify the field mapping for datasets containing multiple taxa. In
new_data.mdb/FieldMapping, the Operator creates a record for

each field to map, with a foreign key to the dataset record in the
same database. Each primary field in a PISCES observation record
may be mapped to a field in the dataset. The notes field allows a
semicolon separated list of fields, indicating that PISCES should
extract the data from all of those fields into a single string for
storage. Each record can also be marked as required, indicating that
PISCES should skip the record if it does not include the data. Finally,
each field mapping can include a specification of a handler function
to allow the Operator to tailor a generic input filter to a dataset with
minor variations. The handler functions act as overrides that pro-
cess the value for a field and can transform it, with many input
filters having default handler functions for the primary PISCES
fields.

After these configurations have been made, the operator opens a
command prompt to the PISCES software directory (PISCES/scripts/
PISCES) and runs the command “python main.py import.” PISCES
will then attempt to import data for all configured datasets that
have not completed importation, retrying any that previously
failed.

Common PISCES ETL operations

PISCES relies primarily on a few operations to transform data-
sets to HUC12s. For data that is already in a spatial format, PISCES
conducts a spatial join to intersect the dataset with the HUC12
dataset and transfer the HUC12 attributes to the source records.
PISCES can then read the HUC12 ID value from each record in the
dataset and store that value as the species location.

Most translation steps involve variations on this method. Some
datasets require field level translation in addition to the species ID
translation. Others have multiple species per record, requiring the
input filter to convert the dataset to a single-species per record
format before the spatial join. Many datasets we processed were
purely tabular data with coordinates, for which PISCES creates a
spatial dataset from those coordinates to run the spatial join on.

Editing and quality control workflow

For textual data, reports, paper datasets, and expert knowledge,
we used a different suite of tools to add information to PISCES. The
PISCES toolbox (located at PISCES/tbx/PISCES.tbx) is a set of ArcGIS
tools that enable the Operator to have various interactions with the
database. The “Add or Modify Data” tool, shown in Fig. 7, is the
primary method for range editing. To use this tool, the Operator
opens an existing range map export for a single species and de-
termines the HUC12s to modify. Using the ArcGIS selection tools,
the Operator makes a selection on the appropriate HUC12 layer,
then opens the Add or Modify Data tool, setting the name of the
layer with the selection as the value of the input layer. The Operator
can then specify the species these modifications pertain to, and the
operation — add, remove, or transfer. Add and remove are
straightforward: they add or remove the selected HUC12s from a
species range (subject to caveats specified in another parameter).
Transfer is meant to deal with situations where PISCES tracks
subspecies, but an input dataset did not. It allows the Operator to
move records from an incorrect taxon to the correct one. For
example, an input dataset might specify the taxon as “Chinook,” but
PISCES tracks multiple evolutionarily significant units (ESUs) of
Chinook, each with differing ranges. After reviewing the relevant
information that enables assignment to a particular ESU or sub-
species, the Operator can transfer the records to the correct taxon.

The species and selection are the required parameters, but from
the dialog box the Operator can tweak the metadata and extra
parameters for the changes. The dialog takes a message parameter
for the Operator to indicate justification or sources for the edits and
any other notes about the data. Additionally, a “subset” parameter
lets an operator familiar with SQL where clauses tailor the impact of
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Fig. 7. PISCES manual editing tool for expert additions, deletions, and modifications. From the PISCES toolbox in PISCES/tbx/PISCES.tbx/Modification/Add or Modify Data.

the changes by adding limiters, such as specific observation types,
observation sets, and other constraints. Checkboxes are also avail-
able for directly limiting the changes to specific observation types,
with the default limitation being that only expert opinion data is
affected. Finally, the Operator can specify the input filter and
observation set for new records to be assigned to and whether or
not PISCES should return a new expert opinion layer into ArcMap so
the changes can be viewed immediately.

After the Operator fills in the parameters and runs the tool,
PISCES builds a database query to make the changes, with a
placeholder (bind value) for the HUC12 IDs. It then loops through
each HUC12 ID in the selection on the input layer and executes the
query for each one, making the changes to the database. Finally, it
adds a transaction record to the Transactions table in the database
with the parameters to the tool and the result.

Mapping setup

Sections 2.1.4 and 2.2 detail the key internals of the mapping
code. The operator can specify the inputs to this code in the tables
defs_Query_Sets, Map_Queries, and Query_Bind in pisces.mdb.
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