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The Task 1:Analysis of Historic Hydrogeomorphic Conditions research program
reconstructed the environmental history of the McCormack-Williamson Tract (MWT) in order to
provide a strong foundation of understanding and check assumptions currently used in forward-
looking wetland restoration planning, analysis, and modeling.  The work primarily involved
collection of sediment cores and a “forensic” analysis of multiple environmental indicators
preserved in the cores, coupled with a shallow seismic reflection surveying of the tract.  The
effort yielded a wealth of useful information for restoration planning at a very low cost relative
to other components of the overall MWT project, and thus serves as a model for the application
of historical environmental analysis in other CALFED endeavors.

Beyond the scientific data and analyses reported here, this research program provided significant
public/professional outreach and education.  Outreach activities included 4 conference
presentations, 4 scientific manuscripts (with more yet to come), 1 presentation to stakeholders,
multiple meetings to convey results to stakeholders, and the development of multiple web sites
providing detailed data and information to the public.  Educational activities included the
mentoring of a postdoctoral researcher and the training of 14 undergraduate and graduate
students.  A presentation was even made to the international geoscience community in
Strasbourg, France at the expense of the researchers themselves, given their strong belief in the
importance of the free exchange of ideas.

The sections of this report each represent a piece of a forensic puzzle.  The original intent was to
provide a comparison between the conditions reconstructed on the MWT and the adjacent Delta
Meadows parkland previously thought to be relatively “pristine”.  Specifically we sought to
provide: a) an assessment of the stability of the physical structure of the system in the past;  b)
determination of the amount and direction of energy driving changes in sediment patterns in the
system; c) quantification of the relative proportion of vertical accretion due to watershed influx
of inorganic sediment versus in situ biomass accumulation; and d) characterization of the spatio-
temporal distributions of habitats within and closely adjacent to the MWT.  All of this was
achieved and more.  Notably, data required to facilitate these objectives was also able to yield
important insights into the geochemistry and pollution history of the site, which has recent come
to light as possibly constraining CALFED’s vision for wetland restoration in the Delta.

Below is a summary of each section included in this final report.  The sections provide insight
into environmental history of the upper Delta and the restoration significance of that history. The
ultimate significance of these findings for restoration is that regardless of careful design of a
tidal gradient as has been done in other Delta projects, a restored upper delta will be subjected
to an unpredictable flood regime that will result in a spatially complex assemblage of



geomorphic units that will defy conventional criteria for “success” in restoration.  That is not
inherently bad in that it is the natural condition of the system.  However, the assumption of a
well-ordered tidal geomorphic process as exists in other modern tidal freshwater wetlands is not
appropriate for MWT.  In addition, the presence of extremely high mercury concentrations in
both the Delta Meadows and MWT create significant uncertainty in the biogeochemical fate of
wetland restoration of MWT, though the opportunity exists for experts to study the
biogeochemistry of Delta Meadows and establish how such a wetland functions in face of the
existing pollution .

Section 1: The geomorphic dynamics and environmental history of an upper deltaic
floodplain tract in the Sacramento-San Joaquin Delta, California,

Contrary to our original expectation and the apparent expectation of the restoration planners we
have interacted with MWT has been dominated by spatially complex flood processes
characteristic of non-tidal floodplains for most of its history, very similar in nature to the lower
Cosumnes floodplain and not at all like the organic peat flats in the lower delta and estuary.  The
observed sedimentary strata in the cores varied among cores and included basal clay, sand
channel, distal floodplain, and an agriculturally-impacted surficial horizon.  A comparison of
MWT’s history of elevation change against the regional sea level rise curve developed by Brian
Atwater two decades ago shows that the surface of MWT has been much higher than the 0.5-0.7
m present day tidal difference between mean sea level and mean higher high water for more than
10,000 years.  Energy in the system was directed in a complex pattern reflecting the history of
channel migration, channel avulsion, distal floodplain accretion, and a patchwork of non-tidal
wetland organic accretion. Watershed-derived inorganic and organic sediment dominated over in
situ biomass accumulation. There is no signal of tidal processes for most of MWT’s history. A
long-term trend of sediment fining most likely signifies the natural filling of the site’s sediment
storage space as typically occurs for floodplains.  Pollen preserved in the sediment show that a
mosaic of habitats including open floodplains, riparian forests, Scirpus wetlands, and upland
woodlands were common during the last 4,000 years, though in the modern era these are more
restricted and less productive.  Only in the last 2,500 years has MWT come under any definitive
tidal influence.  Since then the upper deltaic plain has shown a unique geomorphology of poorly
drained silt and clay forming a permanent wetland with a very thin veneer of vegetation and
organic matter.  However, the history of strong flood disturbance present throughout the record
of all cores did not abate with the onset of upper deltaic plain conditions.

Section 2: Long-term sediment geochemistry and mercury poisoning risk in an upper
deltaic plain proposed for tidal wetland restoration.

The geochemical history of MWT was originally reconstructed to help constrain the timing of
recent site geomorphic changes, but ultimately it went well beyond that application, addressing
basic science and applied environmental restoration questions regarding processes in the
uppermost zone of a delta.  Specific goals of this section of the report include identification of
depositional processes promoting geochemical retention of specific constituents, assessment of



remobilization of redox sensitive constituents, and determination of the extent of sediment
contamination with key trace elements including Hg, As, Pb, Cu, and Zn.  All cores showed
typical sediment geochemistry behavior in terms of inter-element relations as revealed through
regressions and principle components analysis.  Organics controlled sulfur abundance, but that
did not in turn affect other elemental abundances.  Rather than showing similar stratigraphy and
geochemical down-core trends, each core had a unique record.  When records were segregated
by the broad strata types of basal clay, sand channel, distal floodplain, and agriculturally-
impacted surficial horizon, each strata type was found to have a significantly different
characteristic geochemical signature across the spectrum of elements.  The agriculturally
impacted surficial layer in all cores showed high Hg, As, P and Pb concentrations.  Specifically,
total Hg concentrations as high as 438 ppb were recorded in surficial MWT sediment as
compared to a long-term background level of 10-30 ppb.  As toxic organic formulations typically
account for <8% of total Hg, there could be as much as 35 ppb of the toxic form, which far
exceeds that recorded in other regions of the Delta and Sacramento Valley.  Thus, there appears
to be a significant risk of conversion of total Hg into bio-available forms of Hg that are harmful
to organisms.

Section 3: Spatio-temporal variability across an upper deltaic plain in the Sacramento-San
Joaquin Delta, California, with emphasis on a floodplain, tidal freshwater wetland, and an
agricultural boundary

To put the history of MWT into context, given that it is a disturbed site due to the on-going
farming, a comparative analysis was performed between the history of MWT and the adjacent
protected Delta Meadows (DM) wetland covering the last 4,000 years.  Amazingly, wetland peat
is present only as a thin veneer at DM too.  In fact, AMS radiocarbon dating of the base of the
peat shows that the tidal wetland is less than 100 years old.  The elevational history of DM also
shows that it did not come under tidal influence until the most recent anthropogenic period,
suggesting that the wetland itself was a result of human impact, most likely gold mining
sedimentation.  This finding is very similar to results reported for Atlantic tidal freshwater
wetlands of Chesapeake Bay, Delaware, and New Jersey.  In terms of habitat history widespread
floodplain was dramatically transformed into farmland on MWT and yielded to wetland
development at DM.  Sedimentary and geomorphic structures from MWT and DM reveal that
flooding and inorganic sediment deposition typified the site in the past.  In recent times,
landscape modeification and utilization has resulted in lost habitat and increased concentrations
of geochemical pollutants.  .  Whereas MWT shows the potential for becoming a polluted marsh
risking wetland biota, DM is in fact already a highly polluted biohazard.  Hg, Pb, As, and P all
show extremely high concentrations relative to pre-anthropogenic background levels.  The
restoration significance of these findings is that there are no long-term, stable tidal freshwater
wetlands on the upper deltaic plain of the Sacramento-an Joaquin Delta.  Such wetlands are
geomorphically ephemeral, but part of an overall habitat patchwork.  Also, it is imperative that
research be performed right away to determine the significance of the pollution in Delta
Meadows so this may serve as a model for what to expect in restoring Delta tracts.



Section 4: Shallow Seismic Reflection Survey Research On An Upper Deltaic Plain In Aid
Of Wetland Restoration Planning

Seismographic technology was tested in two phases to ascertain if this technology could be used
to extrapolate results from the coring study to the subsurface between where cores were
analyzed. In the first phase of the testing, we successfully imaged underground river channels
and sedimentary layers, but they turned out to be much too deep to be of relevance for
restoration.  In the second phase, the physical limits of near-surface data collection were
contested using highly customized equipment to image near-surface substrate, yielding excellent
raw data.  Unfortunately, the amount of seismic data collected using very high sampling
resolution exceeded our ability to analyze the data using the low-cost software available to us.
Without having the data analyzed, it is not possible to evaluate the depth of the survey or the
resolution of sedimentary layers.  Consequently, while this project has yielded some very
interesting results that will inform wetlands restoration at the McCormack-Williamson Tract, it
has revealed a limitation of seismic technology for routine evaluations of potential restoration
sites: unreliability of low-cost software and complexity of methods required for analysis and
interpretation by skilled geologists. We have concluded at this time that seismology is of much
less value than sediment coring in revealing and understanding subsurface structure.
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Abstract 

A multi-proxy approach was used to examine the geomorphic dynamics and environmental 

history of an upper deltaic floodplain tract in the Sacramento-San Joaquin Delta, California.  

Three long cores were collected from the McCormack-Williamson Tract (MWT) and these cores 

were analyzed for bulk density, loss-on-ignition, fine (clay and silt) content, Al concentration, 

magnetic susceptibility, pollen, and charcoal.  Radiocarbon dates obtained for the cores were 

converted into calendar years and an age-depth model was constructed.  Long-term vertical 

accretion and sedimentation rates were estimated from the age-depth model.  Cross-core 

relations show that coarse sediment generally accumulates more rapidly and has greater magnetic 

susceptibility compared to fine sediment.  Percentage fine and LOI data show a strong linear 

relationship that indicates flooding is the primary mechanism for the deposition of particular 

organic matter on the floodplain and that landscape wash load has contributed a highly consistent 

fraction of persistent organic matter averaging 5.5 % to the site.  Down-core grain size profiles 

show two hydrological domains in the cores, namely millennial fine-coarse fluctuations 

superimposed on general up-core fining.  Coarse sediment is viewed as channel or near-channel 

overbank deposits, whereas fine deposits are considered to be distal overbank flood deposits.  

The coarse-fine fluctuations are indicative of changing depositional settings as channels migrate 

laterally across MWT, whereas the upward fining trend reflects a combination of self-limiting 

overbank deposition as floodplain elevation increases and decreasing competence as sea level 

rise reduces flood-pulse energy slopes.  MWT has been crosscut and incised numerous times in 

the past, only to have the channels abandoned and subsequently filled by fine sediment.  MWT 

likely came under tidal influence at about 2,500 cal BP and, at the same time, the channels 
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around MWT attained their modern configuration.  Wetlands have recently developed on MWT, 

but they are inorganic sediment dominated. 

 

Keywords: floodplain, delta, geomorphic dynamics, channel migration, marine transgression, 

Holocene, California 
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INTRODUCTION 

In comparison to the broad-scale geomorphology of floodplains and intertidal deltas, the 

fine-scale processes at the interface between the two have received little focus.  The floodplain-

delta interface is highly important because the processes operating at the interface can influence 

the formation of oil and gas traps and deposits (Rainwater, 1975; Noble et al., 1991) as well as 

impact the local environmental geology of lands that are often used for agriculture or urban 

expansion.  The interface is also important because its landscape position can yield an integrated 

perspective on basin-scale paleoenvironmental conditions (Pasternack et al., 2001). 

Current understanding of the long-term geomorphic processes that characterise 

floodplains stem from the geomorphic analyses of stratigraphic successions of cutbanks, 

excavated trenches, and sediment cores.  Classically, the two dominant processes driving 

floodplain evolution are lateral accretion (Wolman and Leopold, 1957) and overbank deposition 

(Bridge, 1984; Nanson, 1986; Walling and He, 1998; Tornqvist and Bridge, 2002).  The relative 

roles of each vary substantially as a function of allogenic controls such as climate (Brakenridge, 

1980; Blum and Tornqvist, 2000), climate variability (Knox, 1993; Goodbred and Kuehl, 1998), 

basin characteristics (Benda and Dunne, 1997), and human activities (Knox, 1995).  Additional 

important processes that affect floodplains include channel avulsion (Bridge, 1984; Goodbred 

and Kuehl, 1998; Tornqvist and Bridge, 2002) and organic accretion (Mattraw and Elder, 1984; 

Cotton et al., 1999).  These processes and still others result in a large number of floodplain 

forms, which are well summarised by Brown (1997). 

Geomorphic processes acting on deltas have also been described through analyses of 

sedimentary deposits.  The dominant processes controlling deltaic evolution are subaqueous 

sediment input and sediment redistribution (Galloway, 1975; Coleman, 1976).  Constraints on 
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long-term deltaic evolution stem from the interdependent process of sea-level change and 

accommodation (Jervey, 1988; Blum and Tornqvist, 2000).  Delta morphology has also been 

linked to the grain size distribution of sediment input (Orton and Reading, 1993).  More recent 

studies have shown that delta plain evolution is strongly influenced by vegetative controls 

(Pasternack and Brush, 2001; 2002) and by the floodplain processes described above (Goodbred 

and Kuehl, 1998). 

Attempts to delineate the downstream extent of floodplains (Alexander and Marriot, 

1999) and upstream extent of deltas (Colman, 1976) suggest no distinctive process or 

morphology on which to base the delineation.  Colman (1976) terms the “upper deltaic plain” as 

the region above significant tidal or marine influence that is dominated by riverine depositional 

processes.  Because this zone may be ~100 km inland from the subtidal zone, the potential for 

wind and tidally transported coastal sediment to play a role is often negligible, though winds and 

tides may be important in the redistribution of riverine channel and overbank flood sediments.  

Goodbred and Kuehl (1998) reported that the upper delta plain of the Brahmaputra-Ganges 

system included significant areas of inactive floodplain that were isolated by channel avulsion. 

In this study, a detailed investigation was performed to characterise the processes 

occurring at the interface between a floodplain and a delta using sedimentological and 

paleoenvironmental reconstruction techniques.  Specific objectives to achieve this 

characterisation of the interface were to 1) develop an age-depth model for a transitional site; 2) 

document down-core stratigraphic zonation, rates of vertical accretion and sedimentation as well 

as changes in grain-size; 3) characterise the cross-core relations between grain-size, accretion, 

sedimentation, and magnetic susceptibility; 4) assess the relative proportion of vertical accretion 
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due to watershed influx of sediment versus in situ biomass accumulation; and 5) examine the 

fluvial processes operating at the site as well as the evolution of the tract. 

 

STUDY AREA 

The Sacramento-San Joaquin Delta is a 299,000 ha inland tidal delta located east of San 

Francisco Bay in central California with an ~107,000 km2 drainage basin (Fig. 1).  According to 

the classification of Galloway (1975), the delta is dominated by sediment input, with an annual 

outflow of ~19 billion m3 of water and suspended sediment annual inflow and outflow of ~4.7 

and ~3.3 million metric tons, respectively (Conomos and Peterson, 1976).  The lower delta plain 

shows some morphological influence of winds and mixed tides.  Monthly mean wind speed 

ranges from 2-5 m s-1 with peak monthly gusts averaging 15-21 m s-1 (Conomos and Peterson, 

1976).  The primary wind direction is westly.  The summer tidal range at the delta front is ~1.4 m 

and that in upper delta distributary channels is ~1.0 m.  The delta has a rejoining distributary 

channel pattern (sensu Colman, 1976) because of the erratic discharges and high tidal range.  

Since the mid 19th century, 73 % of the delta’s area has been converted to agriculture 

necessitating 1,800 km of levees (Logan, 1990).   

The McCormack-Williamson Tract (MWT) is uniquely located at the head of the delta 

downstream from the confluence of the Cosumnes and Mokelumne rivers and adjacent to the 

Sacramento River (Fig. 1).  The Cosumnes River is the only major river flowing out of the Sierra 

Nevada whose mainstem is undammed.  MWT is ~650 ha in area and is bordered by the 

Mokelumne River to the east, Snodgrass Slough to the west, and artificial dredge channels to the 

north and northeast.  Historic maps show that MWT supported freshwater wetland in the early 

20th century (United States Geological Survey, 1911).  The wetland was likely tidal, as the 
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adjacent channels are presently tidal for several miles upstream.  Subsequently, the tract was 

leveed, drained, and converted into agricultural land.  After drainage, MWT and other delta 

islands experienced subsidence as surface organic sediment was oxidised and decomposed 

(Rojstaczer et al., 1991). 

Band (1998) and Florsheim and Mount (2002) indicate that tectonic subsidence around 

the delta is somewhere between 0.15-0.5 mm/yr.  The primary sea level rise curve for the region 

by Atwater (1980) did not account for tectonic subsidence or local compaction, but 

acknowledges that compaction of peat deposits in the delta could influence subsidence rates.  In 

modern times farmed peatlands further downstream from MWT have subsided at a rate of 7.5 

cm/yr due to surficial decomposition and deflation.  Another factor that could cause subsidence 

in the delta and on the floodplain is underlying sediment compaction caused by aggradation.  

However, because the long-term rates and amount of subsidence are not precisely known we do 

not adjust our data to account for subsidence but rather note that subsidence has and is occurring 

in the delta region. 

The general climate in the MWT region is Mediterranean, with cool, wet winters and hot, 

dry summers.  Climate normals for the years 1961-1990 from Lodi, a town located ~15 km 

southeast of MWT, record an average minimum temperature of 2.3 oC in December and an 

average maximum temperature of 33 oC in July.  Monthly precipitation varies from an average of 

1.8 mm in July to 80.8 mm in January.  Annual precipitation averages 434 mm.  A cool "delta 

breeze" typically blows inland from the estuary during the summer, cooling nighttime 

temperatures.  Winter precipitation is predominately rain, though in the high Sierra Nevada the 

main form of precipitation is snow.  In the spring, snowmelt is retained in reservoirs for summer 

use, though historically it created widespread lowland flooding. 



 8

The little riparian vegetation that exists at MWT is largely located along the levees.  

Scientific nomenclature follows that of Hickman (1996).  The most common trees include 

Quercus lobata (valley oak), Populus fremontii (Fremont cottonwood), Platanum racemosa 

(western sycamore), Acer negundo (box elder), Fraxinus latifolia (Oregon ash), and Alnus 

rhombifolia (white alder).  Atwater (1980) also recorded the presence of Cornus stolonifera 

(creek dogwood).  Vitis californica (California grape) grows on many trees.  Common shrubs 

include Rosa californica (California rose), Rubus discolor (himalayaberry), and several species 

of Salix.  Cephalanthus occidentalis (bottonbush) was noted close to the channels and 

Chenopodium ambrosioides  (Mexican tea) occupies open disturbed sites.  Nearby wetlands 

consist predominately of Scirpus acutus (common tule). 

 

METHODS 

To characterize the geomorphic relations and paleoenvironmental conditions on MWT, 

three long sediment cores (MWT-2, MWT-6, and MWT-8) were collected along the longitudinal 

axis of the tract  (Fig. 1).  MWT-2 is located near the southern tip where the elevation is -30 cm 

relative to the NGVD (1929 National Geodetic Vertical Datum) mean sea level position.  MWT-

6 is centrally located on MWT and is +30 cm NGVD.  MWT-8 is located in the northwest 

section of MWT and is also +30 cm NGVD. 

The cores were collected incrementally using a Geoprobe drilling rig (Fig. 2) with direct 

push and dual-tube sampling technology that enables the cores to be recovered in 1.22-m plastic 

liners.  Sediment compaction or expansion during coring was measured on a section-by-section 

basis as the difference between pushed distance and actual core length.  Core sections were 

stored in a refrigerated room at ~4 °C.  To split a core section in the laboratory, the core liner 
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was first cut lengthwise using a circular saw on opposite sides and then a nylon string was passed 

down the core section between the cuts to yield two halves.  Any smeared sediment was 

carefully scrapped off the exposed sediment surface in a horizontal fashion using a plastic 

spatula.  Subsequently, core lithologies were visually described and plastic u-channels were 

pushed longitudinally into one half of each core section to retrieve samples for magnetic 

susceptibility.  Next, cores were subsampled in 10-cm intervals and subsamples were placed in 

labeled plastic bags for cold storage and later analyses.  Selected organic samples were sent to 

Beta Analytic Inc., University Branch, Miami, Florida for accelerator mass spectrometry (AMS) 

radiocarbon dating (Table 1).  The radiocarbon dates were converted to calendar ages using a 

calibration program developed by Stuiver and Reimer (1993).  Non-linear radiocarbon and 

calendar year age-depth models were developed by fitting a locally weighted function to the 

reported dates.  Vertical accretion (cm yr-1), sedimentation rates (g cm-2 yr-1), and charcoal flux 

were determined using the calendar age-depth model.  

In order to obtain a cross-comparison of the cores to interpret geomorphic dynamics, each 

core’s stratigraphy was determined using both visual and analytical methods, and then a 

statistical clustering algorithm was applied to the data to objectively zone each core.  Analysis of 

sediment cores involved a multi-proxy approach in which standard physical, chemical, and 

paleoecological parameters were quantified.  Sediment characteristics such as bulk density, loss-

on-ignition (LOI), and magnetic susceptibility were measured for all core subsamples.  Sediment 

bulk density (g cm-3) was determined for the cores by weighing a subsample and measuring its 

volumetric displacement in a 50 ml graduated cylinder.  Percentage organic and inorganic matter 

was obtained by LOI.  Samples were weighed wet, dried overnight at 60 oC, weighed dry, 

combusted for 6 hours at 600 oC in a muffle furnace, and reweighed.  The difference between 
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sample wet and dry mass is the water content and the difference between sample dry and post-

combustion mass is the organic matter content.  Magnetic susceptibility was measured for 30 

seconds in 1 cm intervals down-core using a Bartington MS2 magnetometer and was adjusted for 

compaction. U-channels were then stored as archival sediment records at 4 oC. 

Percentages of sands versus fines (silt and clay) were determined for each sample using 

methods adapted from Folk (1974).  Organics were removed using 30% H2O2 (Black, 1965; 

Pasternack and Brush, 2002).  Next, samples were suspended in 500 ml 0.5% sodium 

metaphosphate ((NaPO3)x·Na2O) to fully disaggregate particles and passed through a 63 µm 

sieve to separate sands from fines.  Sands were collected, rinsed with distilled water, dried, and 

weighed to determine total mass of sand.  The fines suspended in the sodium metaphosphate 

were retained after wet separation and subsequently transferred into a graduated cylinder to 

determine total suspended volume.  The fines were then transferred into a plastic bottle and 

vigorously shaken to homogenize the suspension.  A 20-ml subsample was pipetted into a 

weighing dish, dried, and weighed.  Subsample mass was calculated as the dry mass minus the 

mass of 20-ml of 0.5% sodium metaphosphate.  The total mass of fines was calculated by 

multiplying the mass of the dry fines in the 20-ml pipetted subsample by the volume of the 

sample divided by the subsample volume.  Based on the total mass of measured sand and fines, 

the percentages of each fraction were calculated. 

Even though aluminum is not commonly used to directly assess geomorphic dynamics, 

its abundance and variability in siliciclastic sediment makes it very useful in identifying strata 

that may not be visually evident.  Sediment samples for Al analysis were dried, ground, and 

passed through a 0.177 mm sieve to obtain the fine fraction.  Next, they were treated with hot 

concentrated nitric acid to destroy organic matter and oxidised sulfide material and then added to 
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concentrated hydrochloric acid (3 times the volume of the nitric acid) to digest the material.  

After digestion, sample solutions were analyzed using inductively coupled argon plasma with 

atomic emission spectroscopy.  Because sediment digestion was only "partial" for Al, a reference 

soil sample (San Joaquin Soil Standard Reference Material 2709) from the National Institute of 

Standards and Technology was also analyzed for Al using the same procedure.  The difference 

between the measured and known element concentrations for the reference standard was the non-

leachable fraction.  Because the reference material came from a field near the study site, its 

texture, composition, and thus leachable fraction should be very similar to those for samples 

from the sediment cores.  For easier up-core comparison, Al concentrations were normalised by a 

basal average concentration representing an initial state from which up-core changes could be 

assessed on a simplified scale.  Samples from the bottom meter of each core were used to obtain 

the basal average. 

Because observers can easily bias grain size and color information in determining core 

stratification, cluster-based zoning using quantitative sediment properties was used to promote 

objective core interpretation.  The cores were divided into zones and subzones using a 

stratigraphically constrained cluster diagram that was based on values of LOI, fine sediment 

percentage, magnetic susceptibility, and normalized Al concentrations. These variables were 

selected for cluster analysis because they are continuous throughout the cores and are not 

modified down-core by compaction. The core zones are used throughout the text to describe, 

compare, and contrast the cores and core variables. 

Additional information on the paleoenvironmental history of the upper delta was obtained 

from pollen and charcoal analysis.  Pollen preparation followed standard procedures (Moore et 

al., 1991) and the samples were spiked with Lycopodium tablets containing 10,679±953 spores 
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(Batch Number 938934).  The pollen and spores were counted using a Nikon Eclipse E200 

microscope at 400x magnification and identified with reference to pollen floras (Moore et al., 

1991) and the University of California Museum of Paleontology Pollen Reference Collection.  

Pollen counts were converted to percentages using a total of all pollen and spores. 

Charcoal fragments were retrieved by sieving 1 cm3 of homogenised sediment through a 

150 µm sieve (Brown and Hebda, 2002a).  The sediment was homogenised to ensure that the 

charcoal extract was representative of the subsample.  The residue that did not pass through the 

sieve was suspended in water in a gridded petri dish and examined using a dissecting microscope 

at 40x magnification.  Black fragments that were brittle and opaque with sub-metallic lustre and 

cellular structures were counted as charcoal (Sander and Gee, 1990).  Charcoal flux (fragments 

cm-2 yr-1) was obtained by multiplying the number of fragments per 1 cm3 of sediment 

(fragments cm-3) by the sedimentation rate (cm yr-1). 

 

RESULTS 

The majority of the results and interpretations are dependent on a robust age-depth model 

based on the radiocarbon and calendar chronologies, so that is described first in detail.  Once the 

chronologies are established, then the quantitative stratigraphic histories of each core are 

presented.  Next, cross-core and down-core relationships among sediment variables are reported.  

Lastly, the age-depth model is reassessed using the established relationships between variables. 

 

Age-depth Models  

For the time-scale of interest in this contribution and the nature of the materials collected 

as part of this investigation, there is no definitive dating approach that would yield an absolutely 
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accurate representation of chronology.  Therefore we employed the widely used radiocarbon 

dating method (e.g. Hudson-Edwards et al., 1999; Constantine et al., 2003).  Of the 11 AMS 

radiocarbon dates obtained for the cores (Table 1), only one from MWT-2 (Beta-160022) shows 

date inversion (Fig. 3).  This sample derives from a shallow level in MWT-2, but its date is very 

old and inconsistent with the other dates in that core and the other cores.  The age of the material 

is thought to be too old due to long-term storage and eventual reworking of old carbon from 

upstream floodplains.  The 2 bottom radiocarbon dates from MWT-2 are old and do not yield 

valid calibration ages.  In consequence, we have elected to present 2 age-depth models, a 

conventional radiocarbon model and a calibrated calendar year model (Fig. 3).  The radiocarbon 

age-depth model for MWT-2 consists of 3 dates whereas the corresponding calendar chronology 

is reduced to 1 reliable date.  Additional radiocarbon samples were not obtained for MWT-2 

because visible organic matter such wood fragments were not observed at any other levels apart 

from those already dated.  The resulting calendar age-depth model for MWT-2 is a linear model 

that likely does not accurately reflect patterns of past sedimentation.  Subsequently, an alternate 

and preferred calendar chronology, consisting of 3 dates (1 measured and 2 inferred), was 

developed for MWT-2 using the radiocarbon age-depth model.  The inferred dates were selected 

as the points of cross-over between MWT-2 and the other cores in the radiocarbon age-depth 

model.  The inferred radiocarbon dates were then converted to calendar years (Table 1) and a 

new MWT-2 calendar age-depth model developed.  All ensuing core calculations, such as 

accretion and sedimentation rates, were based on the MWT-6 and MWT-8 calendar age-depth 

models as well as the inferred model for MWT-2 respectively. 

The most believable and perhaps reliable radiocarbon dates in the age-depth models are 

from the organic (peat and wood-in-peat) deposits in MWT-8 at 1040-1050 and 540-550 cm 
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depth because these ages are derived from in situ wetland sediment that was deposited in a stable 

environment.  In MWT-2, the dates at 1065 and 1075 cm depth are also thought to be correct 

because they suggest extremely slow sedimentation or the existence a hiatus across a sharp 

lithological boundary that corresponds to late-Wisconsin glaciation in California (Bischoff and 

Cummins, 2001).  The confidence in the remaining dates is intermediate because of possible 

temporary upstream sediment and carbon storage in hillslope colluvium, floodplains, or terraces 

that creates a gap between organism death and final deposition in the delta.  The basal date in 

MWT-2 must be viewed with caution since it is near the limit of radiocarbon detection. 

 

MWT-2 Stratigraphy  

The stratigraphically constrained cluster analysis identified six zones (MWT2-1 to 

MWT2-6) in the MWT-2 core (Table 2, Fig. 4).  Note that the chronology in MWT-2 shifts from 

radiocarbon years to calendar years because the oldest dates extended beyond the radiocarbon-

calendar calibration curve and could not be converted into calendar ages.  MWT-2 is 1330 cm 

long and begins in gray clay from 1330-1135 cm that was deposited between roughly >40,000-

29,000 radiocarbon years before present (14C ybp).  Alternating bands of green silt and clay 

occur from 1135-1070 cm depth and span the interval from approximately 29,000-24,000 14C 

ybp.  The radiocarbon chronology indicates that an interval of extremely slow sedimentation or a 

hiatus exists at 1070 cm depth and spans approximately 11,000 14C years.  Silt with visible mica 

flakes was deposited after about 14,500 calendar years before present (cal BP) from 1070-1026 

cm depth.  Coarse sand with layers of silt and clay from 1026-800 cm is followed by a layer of 

beige clay with organic fragments from 800-788 cm depth.  These units were deposited between 

roughly 13,500-8500 cal BP.  Olive silt occurs from 788-755 cm depth.  Greenish-grey sandy-
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clay is recorded from 755-700 cm depth.  Alternating layers of grey silt and sand noted between 

700-607 cm depth are followed by alternating layers of grey and red-brown sand between 607-

482 cm depth.  Mottled sand, silt, and clay are observed between 482-427 cm.  The mottles are 

typically dark grey and brown and 1-2 millimeters in size.  The units from 755-427 cm depth 

were deposited between about 8,000-4000 cal BP.  Clays containing concretions and organics 

that were deposited between 4,000-1,900 cal BP (427-220 cm) are interrupted by a thin sand 

layer at 307-299 cm depth.  Sand and silt with organic fragments are present from 220-96 cm.  

Clays with high organic content occur between 96-0 cm depth. 

 

MWT-6 Stratigraphy 

  Four zones were identified for MWT-6 (MWT6-1 to MWT6-3; Table 2, Fig. 4).  Zones 

MWT6-2 and MWT6-3 are subdivided into two (MWT6-2a and MWT6-2b) and three (MWT6-

3a to MWT6-3c) subzones respectively.  MWT-6 is 1440 cm long and begins in alternating fine, 

medium, and coarse red-brown sands with wood fragments from 1440-1170 cm.  These sands 

were deposited before >9,500 cal BP.  Alternating bands of sand and silt occur between from 

1170-376 cm depth from about 9,500-6,500 cal BP, with less sand between roughly 500-700 cm 

depth.  Clay with organic fragments near the bottom and 1-2 mm dark gray-brown mottles near 

the top occur from 376-8 cm depth.  Organic topsoil is noted from 8-0 cm depth. 

  

MWT-8 Stratigraphy 

Five zones are identified in MWT-8 (MWT8-1 to MWT8-5; Table 2, Fig. 4).  MWT-8 is 

1220 cm long and begins in green-blue clay from 1220-1121 cm that was deposited before 

16,000 14C ybp to about 6,500 cal BP.  A coarse sand unit between 1121-1105 cm is followed by 
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a thin layer of gravel from 1105-1100 cm depth.  Alternating sand and clay units are visible from 

1100-866 cm depth.  The units containing sand from 1121-866 cm were deposited between 

approximately 6,500-5,500 cal BP with the gravel being laid down at about 6,400 cal BP.  Clay 

with wood and other organic fragments occurs between 5,500-4,700 cal BP (866-607 cm depth) 

with large wood fragments occurring at 662 and 633 cm.  Organic-rich clay from 607-550 cm 

yields to peat between 550-482 cm depth at about 4,500 cal BP.  The organic-rich clay recurs at 

about 4,100 cal BP and comprises the core between 482-399 cm depth.  Wood fragments are 

noted at 435-431 and 399-395 cm depth.  Clay with organic fragments from 395-231 cm is 

replaced by mottled clay from 231-94 cm.  Alternating organic and mottled clay units occur 

between 94-65 cm depth.  Clay is again noted between 65-20 cm with imbedded gravel and 

pebbles at 58-52 cm.  The clays between 395-20 cm depth were deposited between 3,500-100 cal 

BP and the gravels laid down at about 400 cal BP.  Organic topsoil occurs from 20-0 cm depth. 

 

Vertical Accretion and Sedimentation Rate Trends 

The established radiocarbon and calendar chronologies permit calculation of down-core 

vertical accretion (cm yr-1) and associated sedimentation (g cm-2 yr-1) rates and examination of 

their trends (Fig. 5).  The entire MWT-2 core is characterized by relatively slow rates of vertical 

accretion.  The rate increases up-core over a 15,000 year period from a basal low of 0.03 cm yr-1 

to a high of 0.12 cm yr-1.  In contrast, accretion rates in MWT-6 are initially high (ca. 0.7 cm yr-

1) at about 9,500 cal BP, but decrease sharply through time in 2 stages to ~0.05 cm yr-1.  

Extremely slow accretion in the bottom of MWT-8 is followed by a marked increase during the 

mid-Holocene with peak rates of ~0.4 cm yr-1 occurring at 5,500-5,000 cal BP.  Slower accretion 

rates of ~0.1 cm yr-1 recur in the late-Holocene.  During the last 3500 years, MWT-2 and MWT-
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8 show remarkably similar rates of accretion.  However, the age-depth models also reveal that 

discrepancies exist between the cores in terms of sediment age and depth of deposition.  For 

example, the calendar year model suggests that at 6,500 cal BP the surface elevations of MWT-6, 

2, and 8 were roughly 375, 650, and 1100 cm below present surface respectively (Fig. 3).  The 

radiocarbon model similarly records this discrepancy at 5,000 14C ybp.  The possibility of this 

steep of a gradient is discussed below in light of the multiple proxies and several explanations 

are examined. 

Temporal trends in sedimentation rates parallel those of vertical accretion to some extent 

(Fig. 5), given the narrow range of observed bulk densities in each core (Table 2).  MWT-2 

shows little down-core variability, with sedimentation rates ranging between ~0.05 g cm-2 yr-1 at 

the bottom of the core to 0.2 g cm-2 yr-1 at the top.   A high sedimentation rate of 1.5 g cm-2 yr-1 

is initially observed in the bottom of MWT-6 at 9,500 cal BP, after which values decrease 

noticeably until about 8,000 cal BP.  More gradual change is noted between 8,000 cal BP and the 

present as sedimentation rate decreases from 0.5 to 0.05 g cm-2 yr-1 respectively.  In contrast, 

sedimentation rate is initially very low in MWT-8, with basal values ranging between 0.01-0.1 g 

cm-2 yr-1.  In the mid-Holocene, sedimentation rates increase to a maximum of 0.8 g cm-2 yr-1 at 

5,500 cal BP and then decrease to 0.2 g cm-2 yr-1 by 4,000 cal BP.  Between 4,000 cal BP and the 

present, sedimentation hovers around 0.2 g cm-2 yr-1. 

 

Grain-Size Relations with Accretion and Sedimentation 

Vertical accretion and sedimentation rates at MWT are significantly higher and more 

variable during coarse sediment deposition (Fig. 6).  MWT-6 and MWT-8 both show high rates 

of accretion and sedimentation when fines constitute less than 50% of the total sediment being 
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deposited.  When fines are greater than 50%, both accretion and sedimentation are profoundly 

slower.  No threshold or trend between grain-size and accretion or sedimentation rates is evident 

in MWT-2.  Low rates of sedimentation characterise MWT-2 regardless of fine content.  The 

wetland deposit (MWT8-3 and bottom of MWT8-4) is characterised by a high percentage of 

fines and by intermediate accretion and sedimentation values that are less than those for coarse 

inorganic sediment but generally greater than those for fine inorganic sediment. 

Comparison of the grain-size data among cores shows that while a variety of sediments 

were deposited on the MWT floodplain through time, there are recognizable patterns across the 

tract (Fig. 7).  MWT-2 and MWT-8 are characterised by fine-grained sediment below 1100 cm 

depth that is overlain by coarser grained deposits.  Meanwhile, the basal sediments in MWT-6 

are generally coarse-grained.  Above the coarse-grained units in MWT-2 and MWT-6, there are 

strong fluctuations in grain-size superimposed on an overall trend of upward fining.  MWT-2 

records grain-size fluctuations and general upwards fining starting at about 13,000 cal BP.  In 

contrast, MWT-6, while of the similar length, is of shorter duration and records grain-size 

fluctuations and upward fining starting at a minimum age of about 9,500 cal BP.  The 

fluctuations are marked by three periods of fine-sediment deposition and two periods of coarse-

sediment deposition.  In MWT-2, the first episode of fine deposition was marked by two 

intermittent periods of coarsening.  The thickness of each fine and coarse layer is greater in 

MWT-2 than MWT-6.  MWT-8 differs from MWT-2 and -6 in that it predominately consists of 

fine-grained sediment above the lower coarse unit, though perhaps some correlation can be made 

between the coarser units in MWT-2 and MWT-8 at 6,500-5,500 and 2000-1000 cal BP. 

 

Sources and Rates of Organic Deposition 
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At MWT, organic content does not diminish as a function of depth in response to 

duration of potential decomposition (Fig. 4), but instead shows a strong, direct linear relationship 

to fine sediment content in all cores (Fig. 8).  In situ organic material stemming from biomass 

accumulation under either reducing freshwater wetland or agricultural conditions is easily 

identifiable visually and by relatively high LOI values and the highest fine sediment contents.  

For example, the in situ organic layers in MWT-8 (zones MWT8-3 and bottom of MWT8-4) 

consist of peat and fine sediment with very high organic matter content compared to fine 

floodplain sediment.  The organic matter in peat consists of visible plant fragments, whereas the 

organic matter in floodplain sediment is microscopic and may include a balance of terrestrial 

versus aquatic (algal and microbial) sources (Wolfe et al., 2002). 

When the in situ organic and peat deposits in MWT8-3 and bottom of MWT8-4 related to 

wetland development and surficial core intervals impacted by agricultural activity (i.e. zones 

MWT2-6 and MWT6-4c) are excluded from analysis due to their known and distinct origin, the 

correlation between organic content and fine content for each core is statistically significant 

above the 99 % confidence level, with R values ranging from 0.78-0.87.  The curve representing 

all of the combined data has a slope and y-intercept that matches MWT-8 almost perfectly.  The 

MWT-8 and MWT-2 curves have similar slopes, whereas MWT-6 has a slightly greater slope.  

Based on the sedimentation monitoring research and associated endmember mixing modeling on 

a tidal freshwater delta reported by Knight and Pasternack (2000), the observed relationship is 

indicative of mixing between two distinct sedimentary endmembers: landscape wash load that is 

predominantly fine with higher organic content and channel bed material load that is 

predominantly sandy with low organic content.  Depth intervals with intermediate amounts of 
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fine sediment and organic content represent linear mixtures of the two sources, as the observed 

relationships are all linear. 

Extrapolation of the regression lines to 100 % fines indicates that the organic content of 

the fine-sediment endmember, which primarily derives from hillslope sources, is about 5.5 % 

when all core data is considered but ranging between 4.4-7.9 % for the individual cores.  

Similarly, extrapolation of the lines to 0 % fines yields an organic content of 0.5 % and a range 

of 0.1-0.5 % for the coarse-sediment endmember, which derives from channel bed material.  In 

contrast, the wetlands in MWT8-3 and the bottom of MWT8-4 typically contain >95 % fines 

though this value ranges between 86-99 %.  The organic content in these wetlands is between 5-

32 %, with the organic rich clay deposits ranging between 5-19 % and the peat ranging between 

15-32 %.  The sedimentation rate for wash load sediment consisting of >80 % fines and about 

5% organic matter ranges between <0.1-0.3 g cm-2 yr-1 with a very small contribution to that 

made by the organics (Figs. 6 and 8).  Thus, in situ biogenic accumulation of sediment is a 

negligible component of overall vertical accretion.  In contrast, wetlands contain only slightly 

more fines and yet have noticeably higher sedimentation rates that range between 0.2-0.7 g cm-2 

yr-1, of which 0.05-0.2 g cm-2 is directly due to organic accumulation.  The wash load fraction 

having comparable sedimentation rates to that of the wetlands is typically much coarser grained, 

containing between 20-80 % coarse sediment.   

 

Paleoenvironmental Indicators 

Magnetic susceptibility also shows a relationship to fine-sediment content, though it is 

more complex (Fig. 9).  In general, coarse sediment has a higher magnetic susceptibility 

compared to fine sediment.  This relationship is related to the transport and deposition of dense 
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ferromagnetic minerals (i.e. magnetite) with coarser sediment (Berry and Mason, 1983).  Indeed, 

examination of the sediment under a dissecting microscope reveals that black, opaque, magnetic 

minerals are more common in the medium and coarse sand units compared to the fine sediment.   

MWT-6 and MWT-8 illustrate this relationship well with intervals of >50 % fine content 

having magnetic susceptibility <200 x 10-5 SI units and intervals of <50 % fines having magnetic 

susceptibility between 200-600 x 10-5 SI units.  MWT-2, on the other hand, shows no general 

relationship between grain-size and magnetic susceptibility, with coarse sediments having 

relatively low magnetic susceptibility values and some fine sediments having elevated values 

(Table 2; Fig. 4).  The only other deviation to this pattern is observed in zone MWT6-3b where 

there are almost no variations in magnetic susceptibility regardless of fine content.   Perhaps the 

low values in the coarse sediment in MWT-2 are related to post-depositional diagenesis of the 

magnetic minerals.  Magnetite can dissolve during diagenesis in contact with reducing or acidic 

porefluid, resulting in a loss or reduction of the magnetic susceptibility signal (Singer et al., 

1996).  MWT-2 is located at the southern end of MWT at a lower elevation compared to cores 6 

and 8 (Fig. 1).  In consequence, MWT-2 experienced greater submergence and related anaerobic 

conditions, which likely enhanced the reduction and leaching of iron from the system at this site.  

This process could account for the lower overall magnetic susceptibility observed in MWT-2 

coupled with the lack of a relationship between grain size and magnetic susceptibility.  The low 

magnetic susceptibility from the wetlands in MWT8-3 supports this interpretation because the 

wetland sediment accumulated under similar anaerobic conditions.   

Examination of the pollen and spores (herein pollen) in MWT cores shows that most of 

the grains are small, roughly equivalent in size to silt.  Pollen grains are observed in some core 

zones but not in others (Table 2) and such spotted distribution may be related to the different 
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types of processes operating on the floodplain (Catto, 1985; Fall, 1987).  Some zones are poor in 

pollen because they are dominated by coarse sediment that was deposited during higher velocity 

conditions that kept fine sediment and hydraulically equivalent pollen grains in suspension.  In 

addition, the coarse grained deposits would have experienced greater mechanical breakdown of 

pollen and well as increased post-depositional oxidation of the grains (Havinga, 1967; Brooks 

and Elsik, 1974; Holloway, 1989; Campbell, 1991).  Beuning et al. (1997) similarly noted that 

the lack of sporopollenin microfossils in subaerially exposed sediments was caused by strong 

oxidizing conditions.  Therefore, we posit that fine-grained units should contain more pollen 

compared to coarse-grained deposits.  Pollen is present in non-agricultural zones MWT2-1, 

MWT8-3, and MWT8-4.  The sediment in MWT2-1 averages 97% silt and clay, suggesting that 

the pollen in this zone was transported and deposited with fine sediment.  Zones MWT8-3 and 

MWT8-4 are characterised by >95 and >92 % fines respectively, suggesting that the pollen was 

transported fluvially with the fine component.  The remaining zones that contain abundant fines 

(i.e. >90 %) occur at the top of the cores in the agricultural horizons.  MWT6-3c and MWT8-5 

record the presence of some pollen, whereas no pollen was noted in MWT2-6.  It is hypothesised 

that the reduced concentration of pollen in the upper-most sediment is related to 3 factors.  First, 

the crops that are grown on MWT include tomatoes, corn, and safflower, all of which are 

angiosperms and generally poor producers of pollen.  Second, the surface soils on MWT are 

intensely harvested which mechanically degrades the pollen grains.  Finally, the soils are well 

aerated, promoting the chemical (oxidation) degradation of exposed grains.  The remaining core 

zones are void or extremely poor in pollen at the 1-2 cm3 sampling level.  These zones contain 

between 11-86 % fines, suggesting that the pollen was either not deposited with these units but 

rather transported to some other depositional site with the fines or was post-depositionally 
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degraded through oxidation.  These data suggest that if pollen extraction is desired from a 

floodplain then sediment with at least >90 % fines should be targeted. 

The charcoal records show that fire is not and has not been a disturbance factor on the 

MWT floodplain, even though floodplain vegetation succession studies show that woody plants 

(i.e. fuel) colonize the site (Tu, 2000).  Charcoal fragments are scare on the MWT and occur 

intermittently down-core (Table 2).  The most notable increase in charcoal through time occurs 

in zone MWT8-3, with flux values reaching a high of 54 fragments cm-2 yr-1.  The lithological 

and pollen data from MWT-8 suggest that Cyperaceae, likely Scirpus (Atwater et al., 1979), 

wetlands developed in the northwest corner of the tract during zone MWT8-3. 

 

Age-model Revisited 

Because the calendar chronology for MWT-2 is derived from 1 measured date and 2 

inferred dates, it is worthwhile re-assessing the model using the established cross-core relations 

between grain-size and accretion, sedimentation, and magnetic susceptibility.  More confidence 

can be placed in the sections of the age-model where these relationships are consistent between 

cores.  Slow accretion and sedimentation rates are noted in coarse sediment from MWT-2 

compared to more rapid rates in similarly coarse sediment in MWT-6 and MWT-8.  Both 

accretion and sedimentation are time dependent, suggesting that perhaps the section of the age-

depth model contemporaneous to coarse sediment deposition in MWT-2 is erroneous.  Coarse 

sediment is mainly observed in zone MWT2-3 (Table 2; Fig. 4), representing the 13,000-4,000 

cal BP interval and this interval is subsequently viewed with less confidence.  Magnetic 

susceptibility from coarse sediment in MWT-2 is considerably lower compared to coarse 

sediment from MWT-6 and MWT-8, much like accretion and sedimentation.  However, unlike 
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accretion and sedimentation, measurements of magnetic susceptibility are not time-dependent, 

thus implying that the established age-depth model for MWT-2 may in fact be a suitable model 

because both time-dependent and time-independent variables are behaving similarly and that 

perhaps the coarse sediment in MWT-2 is itself anomalous compared to the other cores, though 

the reasons for this are currently unknown.  These observations suggest that the MWT-2 age-

depth model is a suitable model and that sections dominated by fines can be viewed with more 

confidence compared to coarse core sections. 

 

DISCUSSION 

The three cores from MWT provide new and important insight into geomorphic 

processes, flow regime history, and evolution of a floodplain-delta interface from the Central 

Valley in California.  There are few paleoenvironmental investigations from this region because 

suitable organic deposits are rare and inorganic deposits are often difficult to extract.  MWT-2 

spans the longest duration (>40,000 14C ybp) and provides some detail about MWT that cannot 

be realized from MWT-6 and MWT-8 since they predominately span the Holocene.  All 3 cores 

contain Holocene records and in combination reveal that the MWT was, and continues to be, a 

highly dynamic site characterised by lateral channel migration, incision, overbank flooding, 

reducing wetland development, and a mosaic of habitat types.  The following discussion initially 

focuses on developing a facies model for MWT using sediment grain-size characteristics.  Next, 

time-depth discrepancies in the age-model are discussed in light of the established facies model.  

Finally, the cores are examined temporally and the tract evolution is discussed. 
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Depositional Facies  

Even though the MWT cores were taken along the longitudinal gradient of the upper 

deltaic plain, they do not show a simple trend in grain size that would be associated with tidal or 

fluvial hydraulic sorting along that gradient.  Instead, a complex variety of lithologies and 

sedimentation rates exist, suggesting that various localized flow regimes have characterised 

MWT in the past.  The general relationship between inorganic clastic sedimentation and fine 

content on MWT suggests that coarse sediments are reflective of channel or near-channel 

deposits since sediment near river deposits typically have greater sedimentation rates compared 

to those deposited distally on the floodplain.  This finding is consistent with our own monitoring 

of floodplain sedimentation upstream on the lower Cosumnes River floodplain and the extensive 

literature that has demonstrated a strong correlation between distance from the channel and 

event-based (e.g. Asselman and Middelkoop, 1995; Steiger et al., 2001) or decadal-scale (e.g. 

Kleiss, 1996; Allison et al., 1998; Goodbred and Kuehl, 1998; Walling and He, 1998; Walling et 

al., 1998) sedimentation rates.  It is also consistent with the demonstrated relationship between 

the deposition of sand and channel proximity during flood events (e.g. Jacobson and Oberg, 

1997; Ten Brinke et al., 1998; Florsheim and Mount, 2002).  In consequence, we interpret the 

units dominated by fine sediment as overbank flood deposits that were laid down more slowly 

and distal to the channel.  Thick coarse sand units may be either channel deposits or near-channel 

overbank flood deposits (Walling et al, 1997; Walling and He, 1998; Tornqvist and Bridge, 

2002).  Our monitoring of sediment deposition on the floodplain in the lower Cosumnes has also 

found that gravel is only deposited in-channel and not on the floodplain surface. 
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Tract Elevation 

The age-depth model (Fig. 3) suggests that the surface of MWT may have been highly 

variable in the past.  For example, at 6,500 cal BP the model indicates an ~7 m difference in 

elevation between MWT-6 and MWT-8, which are only 1 km apart (Figs. 1 and 3).  Yet, it is 

hypothesized that the overall surface of the MWT upper deltaic plain was likely subdued through 

time with only a small elevation gradient in a downstream direction.  Perhaps elevational 

gradients between different depositional facies on MWT such as natural levees or channels could 

account for the apparent differences in the age-depth model.  Indeed, Tonqvist and Bridge (2002) 

show a rapid decrease of several metres in overbank sediment deposition away from the channel.  

Alternatively, this pattern could be an artifact of an age-depth model limited by few dates. 

Historical maps of the Sacramento River floodplain 22 km upstream of MWT show 

natural channel levees that are 5 m high adjacent to the channel and 1.5 m high 1 km away 

(Atwater et al., 1979), yielding a 3.5 m range over the same distance as that between the MWT 

coring sites, suggesting that a natural levee could possibly account for some but not all of the 

elevation difference between cores.  Natural levees along Snodgrass Slough in a protected state 

park opposite MWT show that in this region of the upper deltaic plain levees rise only 25-30 cm 

above the interior plain surface over a 20 m lateral extent (Atwater, 1980), further indicating that 

natural levee deposits, if indeed present in the cores, can only account for some of the observed 

differences. 

Another mechanism that could account for the observed elevation pattern between cores 

is related to channel depth.  The present-day Sacramento River has a typical channel depth of ~8-

11 m, whereas the Mokelumne River adjacent to the eastern side of MWT (Fig. 1) has a channel 

depth of 3-4.5 m.  Around 6,500 cal BP, MWT-6 was characterized by fine sediment and was at 
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the highest elevation (Figs. 4 and 7), whereas MWT-2 was intermediate in elevation and 

aggrading sand.  MWT-8 was lowest in elevation and aggrading sand and fine gravel.  These 

observations suggest that the lowest elevation at MWT-8 existed because there was a sand and 

fine-gravel bedded channel there at 6,500 cal BP, and that a smaller channel or inset bar was 

present at the MWT-2 site.  The gravel in MWT-8 is concurrent with the start of increased 

sedimentation rates in MWT-8 (Fig. 5).  However, the lack of bracketing radiocarbon dates 

coupled with the coarse sampling resolution makes it impossible to determine the exact 

sedimentation rate of this deposit, though it is thought to have been rapid.  In contrast, MWT-6 

was apparently located more distal to the paleochannels at this time as evidenced by the presence 

of silt and clay.  It is envisioned that the channels incised into the floodplain, removed 

underlying fines, and subsequently were followed by channel accretion.  These data suggest that 

MWT was dissected by anastomosing or distributary secondary channels in the past.  Thus, the 

observed 7 m elevational difference between cores could indeed be explained by channel 

processes and later abandonment. 

A third possible explanation for the apparent elevational difference between cores is 

related to radiometric dating of organic material preserved in fluvial sediments.  The observed 

endmember mixing relationship between particulate organic matter and grain-size on MWT (Fig. 

9) suggests that organic matter is eroded, transported, and deposited concomitant with fine 

mineral sediment during overbank floods.  Asselman and Middelkoop (1995) and Walling et al. 

(1997) note a similar relationship where maximum organic matter coincides to sediment 

dominated by clay.  The near-zero fines intercept in figure 9 suggest that flooding is the primary 

mechanism responsible for particulate organic matter deposition on the floodplain and that little 

of the in situ organic matter from floodplain vegetation is preserved unless in a reducing wetland 
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environment, which was observed only in MWT-8.  Thus, while organic matter plays only a 

small role in local accretion on the upper delta plain, it can be derived from reworked upstream 

floodplain sources.  It is, therefore, conceivable that some of the radiocarbon ages are not 

contemporaneous with sediment deposition due to carbon storage and reworking.  For example, 

recycling of carbon could account for the presence of the somewhat older sediment near the 

surface in MWT-6 (Table 2; Fig. 4).  The presence of a highly suspicious radiocarbon date of 

20,160 ± 170 14C ybp at 420-430 cm depth in MWT-2 certainly suggests that older carbon has 

been periodically reworked through the system.  Not surprising, these apparently older ages are 

contained in mineral dominated sediment that certainly could contain older reworked carbon. 

 

Environmental History  

Zone MWT2-1 is highly anomalous because it is considerably older than any other core 

zone.  It is also characterised by fine sediment with high magnetic susceptibility (Table 3; Figs. 4 

and 9) that is atypical relative to other zones that show fines are typically characterized by low 

magnetic susceptibility.  The origins and reasons for the elevated magnetic susceptibility 

measurements in the fine sediments found in MWT2-1 are currently not known.  The chronology 

for MWT-2 suggests that these sediments were laid down during the mid-Wisconsin interstadial.  

Verosub et al. (2001) show that glacial-aged sediment has a higher magnetic susceptibility than 

interglacial sediment that is often diluted by soil forming (organic) processes.  Perhaps zone 

MWT2-1 has a high magnetic susceptibility because the overall amount of inorganic sediment 

that was transported during the cool mid-Wisconsin interstadial was greater than the warmer 

Holocene (Adam and West, 1983).  The high percentage of fines coupled with LOI values that 

are consistent with the established floodplain mixing line (Fig. 8) suggest that floodplains were 
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prevalent in the location of MWT during the mid-Wisconsin.  The pollen from MWT2-1 imply 

the landscape was likely open and consisted of widespread savanna with riparian vegetation and 

wetlands occurring along riverbanks. 

The interval from 23,550 ± 210 to 12,420 ± 90 14C ybp identified in MWT-2 spans the 

late-Wisconsin glaciation (Bischoff and Cummins, 2001).  This interval is characerised by either 

extremely slow sedimentation rates or by a glacial hiatus such as a paraconformity.  At this time, 

lowered sea level would have promoted fluvial incision and little or no sediment is expected to 

have accumulated at the location of MWT because it would have by-passed the site due to the 

lack of a proximal base-level control. 

The post-glacial interval, however, is well represented on MWT with all 3 cores spanning 

most or all of the Holocene.  The variety of core characteristics reveal that several depositional 

facies occurred on MWT throughout the Holocene, implying that it was a highly dynamic and 

variable site that supported a mosaic of habitats.  The relationship of grain-size and 

sedimentation rates to channel proximity suggests that the coarse units in MWT6-1 and MWT8-2 

(Figs. 4 and 9) are either channel or near-channel overbank deposits because of the higher 

sedimentation rates (Fig. 5) compared to other coarse units up-core.  The coarse units in MWT2-

3 (Fig. 4) also likely reflect channel or near-channel deposits, though the origins of these 

deposits are less certain given that the relationship between sedimentation rates and coarse 

sediment input is less understood for MWT-2 compared to MWT-6 and MWT-8 (Fig. 6).  Thus, 

sedimentation and grain-size data from the cores imply that several episodes of post-glacial 

channel incision occurred on MWT.  Riparian ecosystems and floodplain habitat would have 

flanked these channels as they drifted across the tract. 
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  Down-core grain-size profiles (Fig. 7) provide insight into the long-term history and 

dynamics of MWT and reveal that two dominate hydrological features operated on the tract in 

past, namely fine-coarse sediment cycles or fluctuations superimposed on general upward fining.  

The fine-coarse sediment fluctuations are evident in all cores, though they are not as prominent 

in MWT-8 compared to cores 2 and 6.  The fine-coarse fluctuations in MWT-2 show that the fine 

sediment content during low-energy periods changed from 50% to 75% to 95% at about 7,000, 

3,500, and 500 cal BP respectively, whereas the fine sediment content during high-energy 

periods changed from 20% at 6,000 cal BP depth to 60% at 1,000 cal BP.  In MWT-6, the low-

energy periods have 75%, 90%, and 95% fine content at 8,000, 6,000, and 3,000 cal BP, while 

the high-energy periods have 20% and 40% fines at 7,000 and 5,000 cal BP respectively.  The 

fine-coarse fluctuations are less evident in MWT-8 because most of MWT-8 spans only the mid- 

to late-Holocene and it was likely located more distal to the active channel in a quiescent area 

that experienced organic sediment accumulation during the late-Holocene.  We propose that the 

fluctuations in grain-size mainly reflect changes in depositional settings from in-channel to near-

channel and distal-channel, though overbank flooding must also be considered since floods of 

different intensity can not only affect the type of sediment being deposited but also the distance 

from the channel in which it is eventually laid down.  Large flood events are capable of 

depositing coarse sediment further from the channel compared to smaller floods and such pulsed 

events could be mistaken for facies changes.  Evidence that floods of different intensity occurred 

on MWT in the past is found in several of the coarse-grained units where interbedded sand, silt, 

and clay are observed (Fig. 4). 

As noted previously, coarse sediment is laid down in the channel.  On the floodplain, 

coarse sediment is deposited proximal to the channel during overbank flooding whereas fine 
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sediment is deposited more distal to the channel.  Indeed, on-going monitoring of sediment 

deposition on the lowermost floodplain of the Cosumnes River 4 km upstream of MWT show 

that coarse sand similar to what is observed in the cores is carried onto the floodplain surface on 

an annual basis (Florsheim and Mount, 2002).  The down-core fluctuations in grain-size reveal 

that, through time, channels migrated across MWT and consequently changed the spatio-

temporal depositional setting of the tract.  A specific example of channel migration and the 

resulting change in depositional setting can be found in MWT-8 where the switch from largely 

inorganic sediment deposition to increased organic content at about 5,500 cal BP suggests that a 

slough migrated away from the core site at this time, enabling wetland formation and organic 

accumulation.   

Examination of temporal grain-size fluctuations suggests that the earliest episode of 

channel incision and lateral migration occurred in the bottom of MWT2-3.  This channel is 

contemporaneous with the late-glacial interval in the Sierra Nevada between roughly 13,000-

10,000 cal BP.  The late-glacial climate history of the California is complex and variable and 

perhaps these sediments reflect (fluvial) remobilization of widespread glacial sediment (Bursik 

and Gillespie, 1993; Clark and Gillespie, 1997; James et al., 2002) from late-Pleistocene glacial 

melt-water discharge or in response to a relatively cool wet, and possibly stormy, late-

Pleistocene climate as suggested by geomorphic evidence and pollen transfer functions (Adam 

and West, 1983; Rypins et al, 1989; Reneau et al., 1990).  The next episode of channel incision is 

noted in MWT6-1.  A channel migrated in the MWT-6 location before 9,500 cal BP and this 

channel may have persisted there throughout much of the early-Holocene.  Channel deposits are 

also noted in the mid-Holocene.  For example, coarse sediment is observed in the top of MWT2-



 32

3 and in MWT8-2 between 7,000-4,000 and 6,600-5,400 cal BP respectively, suggesting that 

channels were cross-cutting MWT at this time as well.   

The present-day Mokelumne River bounds the MWT to the east (Fig. 1). It is conceivable 

that the ancestral Mokelumne River flowed over MWT at various times in the past and that the 

coarse sediments noted in the cores are lateral migration lag deposits left behind and covered by 

fine floodplain sediment.  The presence of gravel and other coarse sediment in the cores reveals 

that the channel was characterised by a relatively high-energy flow regime.  We favour the 

Mokelumne River over the larger and nearby Sacramento River (presently located with 1 km to 

the west of MWT) as a possible source for these coarse deposits noted in the cores because they 

are quite thin and we reason that channel gravel and sand deposits from a large river like the 

Sacramento would have been relatively thick.  Another explanation, however, is that numerous 

small distributary or anastomosing channels diachronously cross-cut MWT in the past.   

The general upward-fining trend evidenced in the down-core grain-size profiles (Fig. 7), 

on the other hand, may be attributed to a combination of two possible mechanisms, namely self-

limiting overbank deposition as floodplain elevation increases (Wolman and Leopold, 1957) or 

decreasing competence as sea level rise reduced flood-pulse energy slopes.  Following each 

flood event on MWT, sediment accumulation elevated the floodplain surface and thus reduced 

the energetics and duration of future potential overbank deposition.  Lithological evidence from 

the cores such as interbedded clay, silt, and sand indicates that flooding was an important process 

that accreted the floodplain surface and thus contributed to the upward fining trend.  In 

additional, several researchers (Atwater et al., 1979; Atwater and Belknap, 1980; Goman and 

Wells, 2000) have noted that rapid marine transgression averaging about 2 cm yr-1 occurred in 

the San Francisco Bay and western Sacramento-San Joaquin Delta between roughly 11,400-
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7,000 cal BP.  This phase of transgression flooded low-lying coastal communities and moved the 

shorelines inland by as much as 30 m yr-1 (Atwater, 1979).  Transgression slowed to about 0.1-

0.2 cm yr-1 at about 7,000 cal BP, after which salt marshes managed to keep abreast to the slowly 

rising sea levels.  Continued transgression throughout the Holocene suggests that rising sea 

levels did indeed decrease flood-pulse energy slopes through time.  Thus, it appears that both 

flooding and flood-pulse energy slopes where both important factors contributing to long-term 

upward fining trend noted in the cores. 

The presence of peat and organic clay deposits containing Cyperaceae pollen in MWT-8 

at 5-8 m depth shows unequivocally that freshwater wetlands developed and persisted in the 

northwest corner of MWT during the mid-Holocene from 5,500-4,000 cal BP.  At this time, sea 

level was also about 5-7 m lower than present (Atwater, 1979), suggesting that mid-Holocene 

wetlands may have been under tidal influence and diurnally saturated.  Examination of MWT 

core elevations through time and relative to Holocene sea level (Fig. 10) provide shed insight 

into when MWT first came under tidal influence.  Channels adjacent to MWT presently 

experience a tidal range of ~ 1-1.4 m, so any time that past sea level is within ~70 cm of past 

MWT elevations a tidal influence could be present.  Before 8,000 cal BP there is strong deviation 

between sea level and core elevation, with sea level being a minimum of about 5 m below the 

cores, implying that MWT was not under tidal influence at that time.  Channel incision occurred 

at MWT-8 between 7,000-5,500 cal BP and lowered the elevation of MWT-8 to slightly below 

that of sea level.  By 5,500 cal BP the elevation of the wetlands in MWT-8, which is constrained 

by two very reliable AMS dates, is below that of sea level, suggesting that MWT may have come 

under tidal influence sometime between 8,000-5,500 cal BP, likely at about 6,500 cal BP (Fig. 

10).  This interval is certainly contemporaneous to when sea level transgression slowed and 
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wetlands started to keep pace with sea level rise (Atwater, 1979), tantalizing observations that 

suggest MWT may indeed have been under tidal influence in the early mid-Holocene.  However, 

an alternate, and more likely, explanation for MWT-8 is that meander cut-off or channel avulsion 

(Tornqvist and Bridge, 2002), as evidenced by the profound change in grain-size over a relatively 

short time interval, resulted in oxbow formation with subsequent organic accumulation.  In this 

scenario, MWT-8 may have been below sea level, but not under tidal influence.  At 8,000 cal BP 

both MWT-2 and MWT-6 consisted of fine floodplain sediment and were above sea level.  

Channels incised both sites at 7,000 and 8,000 cal BP respectively, though the amount of incision 

did not lower the sites below sea level.  In fact, by 6,000 cal BP deposition of fines was recurring 

at MWT-6, implying that the channel had migrated away from the site and it was slowly 

accreting.  In contrast, the channel persisted at or near MWT-2 until about 4,000 cal BP, at which 

time the elevation of the site was similar to that of MWT-8 and nearing that of sea level.  By 

about 2,500 cal BP, both MWT-2 and MWT-8 were within the 70 cm sea level differential range. 

Thus, it seems reasonable to infer that large sections of MWT came under tidal influence at that 

time.  MWT-6, on the other hand, remained above sea level until very recently.  These 

observations confirm that rising tides must have contributed to the long-term fining upward trend 

observed in the cores, especially during the late-Holocene. 

One interesting aspect of the wetland strata is that they contain the most charcoal 

observed in any of the cores.  The general lack of charcoal in the MWT cores suggests that the 

site did not burn in the past and that flooding was the primary disturbance mechanism.  The lack 

of fire on MWT is likely related to the moist conditions that prevailed in both the riparian zone 

and the floodplain, though fuel discontinuity was also a factor on the floodplain.  The lack of in 

situ charcoal horizons in the peat coupled with frequent saturation due to tidal influence reveals 
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that the wetlands did not burn.  Instead, the increase in charcoal in MWT8-3 is hypothesised to 

be related to the interception of charcoal by dense wetland vegetation (Brown and Hebda, 2002b) 

as it was transported downstream.  In this case, the charcoal is likely from upland sites that were 

perhaps deliberately burned by native people to increase sustenance yield. 

After 4,000 cal BP, fines with organics are ubiquitous over MWT (Table 2; Fig. 4).  The 

generally high concentration of fines on MWT after 4,000 cal BP and the lack of coarse deposits 

suggests that the tract has not recently been cross-cut by major sand-bearing channels and that 

the present-day configuration of major channels was established about 4,000 years ago.  Adam 

and West (1983) and more recently Anderson (1990) show that late-Holocene climate in 

California was characterised by increasing precipitation and decreasing temperatures, ushering in 

a Neoglacial period in the Sierra Nevada (Clark and Gillespie, 1997).  The increase in 

precipitation partially offset the affects of self-limiting overbank deposition and decreased flood-

pulse energy slopes.  During the last 4,000 years, flooding on MWT led to at least 4.5 m of fine 

accumulation at MWT-2 and MWT-8 and about 1.5 m at MWT-6.  Because MWT-6 is much 

higher in elevation compared to MWT-2 and MWT-8 during this period (Fig. 10), it received 

less overall sediment, which could account for the thinner deposit at that site.  The mottles noted 

in the tops of all cores (Fig. 4) are consistent with our interpretation of the late-Holocene since 

they imply sediment mixing consistent with tidal activity and periodic flooding. 

Historic maps show that the entire surface of MWT supported freshwater wetland habitat 

by 1903 AD (United States Geological Survey, 1911).  These wetland deposits are no longer 

present in the tops of cores due to oxidation and plowing into the agricultural horizon, as 

evidenced by crop pollen.  However, Delta Meadows State Park west of MWT along Snodgrass 

Slough still has such freshwater wetlands, and they are tidally inundated.  Thus, sometime within 
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the last few millennia the entire fine sediment surface of MWT came under direct tidal action 

yielding a tidal freshwater wetland.  The core sediments show that even though the modern 

wetland had a higher organic content, delta accretion was still inorganic sediment dominated.  

Thus, vegetation in this region is opportunistically occurring on the surface and not significantly 

contributing to delta evolution. 

In summary, it is possible to extract the unique elements of an upper deltaic plain that 

distinguish it from a floodplain and the rest of the delta based on the results of this study.  In this 

case, the delta is forming over a floodplain as sea level rises, whereas in other situations open-

water receiving basins form deltas that eventually aggrade into floodplains.  Similar to 

floodplains, an upper deltaic plain has cyclic coarse-fine geomorphic units created by alternating 

lateral migration and overbank deposition.  However, unlike a floodplain, the surface of an upper 

deltaic plain consists of poorly drained silt and clay forming a permanent wetland with a very 

thin veneer of vegetation and organic matter.   By contrast, lower deltaic zones have a 

significantly higher proportion of vertical accretion due to peat formation, as evidenced on other 

tracts downstream of MWT in the Sacramento-San Joaquin Delta (Atwater, 1980).   

 

CONCLUSION 

The multi-proxy records from MWT provide insight into the dynamics of an upper 

deltaic plain in the Sacramento-San Joaquin Delta, California.  These records show that 1) 

coarse-grained sediment accretes vertically more rapidly, has greater sedimentation rates, and 

higher magnetic susceptibility values compared to fine-grained sediment and this pattern is 

related to proximity to channel and flood regime; 2) particulate organic matter that washes off 

hillslopes during winter storms and spring snowmelt is deposited on the floodplain with fine 
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inorganic sediment during overbank flooding; 3) the persistent fraction of organic matter that 

survives transport, deposition, and possible diagenesis is 5.5 % of the total sediment mass; 4) two 

hydrological domains are evident in the MWT cores, coarse-fine fluctuations superimposed on 

general upward fining; 5) the fine-coarse grain size fluctuations are reflective of spatio-temporal 

changes in depositional settings as well as variations in flood intensity; 6) the upward fining 

trend is related to self-limiting overbank deposition and reduced flood-pulse energy slopes 

associated with post-glacial marine regression; 7) throughout its history, the MWT (and by 

inference other tracts in the delta) were cross-cut by numerous channels and subjected to 

frequent flooding; 8) MWT first came under tidal influence at about 2,500 cal BP, 9) floodplain 

sediment containing >90 % fines should be targeted for pollen extraction; and 10) fire is not a 

common type of disturbance on the upper deltaic plain though wetland interception of charcoal 

can lead to charcoal accumulation.  In summary, our findings reveal that upper delta plains do 

indeed have a distant geomorphology from floodplains and lower deltaic regions. 
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Table 1.  AMS radiocarbon dates from cores MWT-2, MWT-6, and MWT-8 with 1 standard 
deviation statistics. The radiocarbon dates were converted into median calendar ages using a 
calibration program (Stuiver and Reimer, 1993).  The median calendar ages were then rounded to 
the nearest 500-year interval to reflect the precision of the age-depth model. 
 

Sample 
Number 

Site Material Depth 
(cm) 

Conventional 
14C date (ybp) 

Median 
Calendar 

Age (cal BP) 

Rounded 
Age 

(cal BP) 
Beta-160022 MWT-2 Organic 

sediment 
420-430 20160±170 23860 24000 

Beta-160023 MWT-2 Organic 
sediment 

1060-1070 12420 ± 90 14670 14500 

Beta-160024 MWT-2 Organic 
sediment 

1070-1080 23550 ± 210 N/A N/A 

Beta-151650 MWT-2 Organic 
sediment 

1260-1270 40100 ± 1010 N/A N/A 

Beta-160025 MWT-6 Organic 
sediment 

370-380 5730 ± 50 6530 6500 

Beta-160026 MWT-6 Organic 
sediment 

690-700 7700 ± 60 8480 8500 

Beta-151651 MWT-6 Organic 
sediment 

1290-1300 8630 ± 40 9560 9500 

Beta-160027 MWT-8 Organic 
sediment 

80-90 710 ± 40 665 500 

Beta-160028 MWT-8 Peat 540-550 4290 ± 50 4860 5000 
Beta-151652 MWT-8 Wood in 

peat 
1040-1050 4970 ± 50 5700 5500 

Beta-160029 MWT-8 Organic 
sediment 

1210-1220 15890 ± 100 18970 19000 

Inferred-1 MWT-2 N/A 367 3100 3340 3500 
Inferred-2 MWT-2 N/A 795 7845 8610 8500 
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Table 2. Core characteristics where LOI = loss on ignition and MS = magnetic susceptibility.  
The values presented are zone averages unless a range is specified. 
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Figure 1. A) Regional location map showing the location of the study site (star). B) Map of the 
Sacramento-San Joaquin Delta. The McCormack-Williamson tract is located within box. C) Core 
locations on the McCormack-Williamson tract.   



 54

 

 

Figure 2.  The Geoprobe coring rig used to collect the sediment cores.  Note the duel tubes in the 
ground (arrow).  The outer tube ensures that the coring hole does not collapse and that each 
coring drive is vertically aligned with the previous drive.  The smaller inner tube is attached to 
the core head.      
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Figure 3. Radiocarbon (14C ybp) and calendar (cal BP) year age-depth models.  The star 
represents the discarded date inversion.  The vertical dotted line represents the 5,700 14C ybp and 
6,500 cal BP mark that is discussed in the text.   
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Figure 4.  Stratigraphically constrained cluster diagrams for A) MWT-2, B) MWT-6, and C) 
MWT-8. The diagrams have been normalised using the average values from the bottom 1 m.  
Therefore, a value of 1 reflects average basal conditions, >1 reflects enrichment, and <1 reflects 
depletion.  Differences between the visual lithology and the cluster analysis confirm the utility of 
the objective approach.  The 2 basal dates in MWT-2 are in radiocarbon years whereas all 
remaining ages are in calendar years.  LOI=loss on ignition and MS=magnetic susceptibility. 
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Figure 5. Trends in vertical accretion and sedimentation through time. 
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Figure 6. Cross-core relations between fines, vertical accretion, and sedimentation rates. 
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Figure 7.  Percentage fines variation with depth and calendar age. The two hydrological domains 
in the cores are the coarse-fine fluctuations superimposed on general upward fining.  The core 
names are shown at the bottom of each panel. 
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Figure 8. Linear relationship between fine sediment (silt and clay) and particulate organic matter 
(LOI). The top panel contrasts floodplain samples from all cores with wetland and agricultural 
samples.  The bottom shows the relationship for each individual core.  Agricultural and wetland 
samples are not included in the bottom panel. 
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Figure 9.  Scatter diagram of fines versus magnetic susceptibility.  The cluster of samples around 
200 SI units and >95 % fines are from MWT2-1.  
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Figure 10.  Elevation comparison between a sea level curve from San Francisco Bay (Atwater, 
1979) and the cores from MWT.  Channels juxtaposed to present-day MWT have a 1-1.4 m tidal 
range.  Therefore, core depths that are 1 m or more above sea level represent intervals when the 
tract was not under tidal influence whereas convergence between the cores and sea-level to 
within or less than  ~ 1 m imply tidal influence.      
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Abstract

The geochemical history of an upper deltaic plain proposed for tidal wetland restoration was

reconstructed to address basic science and applied environmental restoration questions regarding

processes in the uppermost zone of a delta.  Specific goals included identification of depositional

processes promoting geochemical retention of specific constituents, assessment of remobilization of

redox sensitive constituents, and determination of the extent of sediment contamination with key

trace elements including Hg, As, Pb, Cu, and Zn.  Three 10-15 m long sediment cores already

analyzed for their stratigraphic and geomorphic records were subsampled on a 20-cm interval for

geochemical analysis involving aqua regia leaching followed by ICP-AES for characterization of 34

elements.  All cores showed typical sediment geochemistry behavior in terms of inter-element

relations as revealed through regressions and principle components analysis.  Organics controlled S-

abundance, but that did not in turn affect other elemental abundances.  Rather than showing similar

stratigraphy and geochemical down-core trends, each core had a unique record.  When records were

segregated by the broad strata types of basal clay, sand channel, distal floodplain, and agriculturally-

impacted surficial horizon, each strata type was found to have a significantly different characteristic

geochemical signature across the spectrum of elements.  The agriculturally impacted surficial layer in

all cores showed high Hg, As, and Pb concentrations.  The significance of these findings for

restoration is that a restored upper delta condition will result in a spatially complex assemblage of

geomorphic units that will defy conventional criteria for “success” in restoration.  Also, there appears

to be a risk of conversion of total Hg into bio-available forms of Hg that are harmful to organisms.

KEYWORDS: metal accumulation, wetland restoration, delta sedimentation, trace metals



INTRODUCTION

Upper deltaic plains present a unique and challenging environment for assessment of

geomorphic, stratigraphic, and geochemical processes.  Because of their landscape position in

the tidal freshwater zone, they are subjected to a complex array of physical and chemical coastal

or estuarine (i.e. receiving basin) as well as watershed (i.e. contributing basin) processes acting

over a wide range of human-relevant timescales (Pasternack, 1998).  With regard to hydrological

and associated processes that occur on hourly to weekly timescales, such systems are commonly

dominated by receiving basin dynamics related to tides and/or winds (Pasternack and Hinnov,

2003).  These processes are often visible to environmental managers and thus are highly

emphasized in planning.  On the other hand, contributing basin dynamics, such as land use

change, infrequent floods, geomorphic adjustments, and sediment yield, operate on decadal to

centennial timescales (Pasternack et al., 2001).  These dynamics control the longevity and

sustainability of environmental management activities, but their influence can only be discerned

through thorough analysis of longer-term records, such as sediment cores, historic maps, or rare

long-term datasets.

In general, deltas are often characterized as having a two-fold history comprising a

constructional phase followed by a destructional phase (Elliot, 1986).  Such phases can be

enhanced or switched from one to the other by human activities (Pasternack et al., 2001),

confounding prediction of future conditions.  Colman (1976) termed the “upper deltaic plain” as

the region above significant tidal or marine influence that is dominated by riverine depositional

processes. Given this position at the head of a delta, upper deltaic plains may additionally

experience a complex combination of non-tidally influenced floodplain processes as well tidally



influenced delta processes. Goodbred and Kuehl (1998) reported that the upper delta plain of the

Brahmaputra-Ganges system included significant areas of inactive floodplain that were isolated

by channel avulsion.

In terms of geochemistry, deltas may act as sinks or sources for rock-derived constituents

and human-generated pollutants, depending on hydrogeomorphic processes at work.

Accumulation and retention can occur by both sediment deposition and solute transport.  The

former encompasses input and burial of metals already incorporated into or onto fine inorganic

and organic particles (Warren, 1981; Olsen et al., 1982; Olsenholler, 1991). Along urbanized

coasts, direct urban runoff and tidally redistributed urban pollution can significantly contribute to

metal accumulation in deltaic soils (Velinski et al., 1994; Knight and Pasternack, 2000).  Solute

transport mechanisms, on the other hand, involve adsorption of metals onto soil and

decomposing plant litter (Millward and Moore, 1982; Simpson et al., 1983a; Simpson et al.,

1983b, Orson et al., 1992), downward migration of free metals into sedimentary strata (Simpson

et al., 1983b; Dubinski et al., 1986), and plant uptake (Sculthorpe, 1967; Banus et al., 1975;

Dowdy and Larson, 1975). Conversely, erosion and export can occur by wind-wave attack

(Pasternack, 1998), overbank flooding and scouring of the delta plain as occurs on floodplains

(Florsheim and Mount, 2003), and by channel incision.  Solute-based losses can occur over

longer periods of time via diagenesis and re-mobilization of easily dissolved constituents

(Hudson-Edwards et al., 1998).

In this study, the long-term complex and coupled geomorphic and geochemical dynamics

that may be occurring in an upper deltaic plain were uncovered and investigated through

interdisciplinary analysis of long (10-15 m) sediment cores.  Specific questions that were asked

included a) what are depositional processes promoting geochemical retention of specific



constituents?, b) Is there any evidence that of large-scale remobilization of redox sensitive

chemical constituents over centuries to millennia?, and c) to what extent  does the upper deltaic

plain play a role in trapping and retaining rock-derived and human-generated elemental

pollutants, specifically Hg, As, Pb, Cu, and Zn?

STUDY AREA

The Sacramento-San Joaquin Delta is a 299,000 ha inland tidal delta located east of San

Francisco Bay in central California with an ~107,000 km2 drainage basin (Fig. 1).  According to

the classification of Galloway (1975), the delta is dominated by sediment input, with an annual

outflow of ~19 billion m3 of water and suspended sediment annual inflow and outflow of ~4.7

and ~3.3 million metric tons, respectively (Conomos and Peterson, 1976).  The lower delta plain

shows some morphological influence of winds and mixed tides.  Monthly mean wind speed

ranges from 2-5 m s-1 with peak monthly gusts averaging 15-21 m s-1 (Conomos and Peterson,

1976).  The primary wind direction is west to east.  The summer tidal range at the delta front is

~1.4 m and that in upper delta distributary channels is ~1.0 m.  The delta has a rejoining

distributary channel pattern (sensu Colman, 1976) because of the erratic discharges and high

tidal range.  Since the mid 19th century, 73 % of the delta’s area has been converted to

agriculture necessitating 1,800 km of levees (Logan, 1990).

The Sacramento-San Joaquin Delta has been subjected to an extremely high influx of Hg

as a result of Hg mining in the Coastal Range northwest of the delta supplying Hg directly

through streams such as Cache Creek and through its translocation and use in gold mining in the

Sierra Nevada northeast, east, and southeast of the delta.  Many studies have been performed to



characterize Hg in organisms (e.g. Choi et al., 1998; Cain et al., 2000), water (e.g. Choe et al.,

2003), and sediment (e.g. Domagalski, 1998, 2001).  For reference in this study, total Hg

concentrations in Sacramento basin river bed material is 50-400 ppb whereas in Sacramento

Valley sloughs it is 30-90 ppb (Domagalski, 2001). Of these totals, anywhere from 0-8% tends to

be reactive in reducing conditions and thus change into a toxic form (Domagalski, 2001).

The McCormack-Williamson Tract (MWT) is uniquely located at the head of the delta

downstream from the confluence of the Cosumnes and Mokelumne rivers and adjacent to the

Sacramento River (Fig. 1).  The Cosumnes River is the only major river flowing out of the Sierra

Nevada whose mainstem is undammed.  MWT is ~650 ha in area and is bordered by the

Mokelumne River to the east, Snodgrass Slough to the west, and artificial dredge channels to the

north and northeast.  Historic maps show that MWT supported freshwater wetland in the early

20th century (United States Geological Survey, 1911).  The wetland was likely tidal, as the

adjacent channels are presently tidal for several miles upstream.  Subsequently, the tract was

leveed, drained, and converted into agricultural land.  After drainage, MWT and other delta

islands experienced subsidence as surface organic sediment was oxidized and decomposed

(Rojstaczer et al., 1991).  The little riparian vegetation that exists at MWT is largely located

along the levees.

The general climate in the MWT region is Mediterranean, with cool, wet winters and hot,

dry summers.  Climate normals for the years 1961-1990 from Lodi, a town located ~15 km

southeast of MWT, record an average minimum temperature of 2.3 °C in December and an

average maximum temperature of 33 °C in July.  Monthly precipitation varies from an average of

1.8 mm in July to 80.8 mm in January.  Annual precipitation averages 434 mm.  A cool "delta

breeze" typically blows inland from the estuary during the summer, cooling nighttime



temperatures.  Winter precipitation is predominately rain, though in the high Sierra Nevada the

main form of precipitation is snow.  In the spring, snowmelt is retained in reservoirs for summer

use, though historically it created widespread lowland flooding.

METHODS

Core Retrieval and Processing

To characterize the paleo geochemical conditions on MWT, three long sediment cores

(MWT-2, MWT-6, and MWT-8) were collected along the longitudinal axis of the tract  (Fig. 1).

MWT-2 is located near the southern tip where the elevation is -30 cm relative to the NGVD

(1929 National Geodetic Vertical Datum) mean sea level position.  MWT-6 is centrally located

on MWT and is +30 cm NGVD.  MWT-8 is located in the northwest section of MWT and is also

+30 cm NGVD.

The cores were collected incrementally using a Geoprobe drilling rig with direct push and

dual-tube sampling technology that enables the cores to be recovered in 1.22-m plastic liners.

Sediment compaction or expansion during coring was measured on a section-by-section basis as

the difference between pushed distance and actual core length.  Core sections were stored in a

refrigerated room at ~4 °C.  Core liners were first cut lengthwise using a circular saw on opposite

sides and then a nylon string was passed down through the core sediment to yield two halves.

Any smeared sediment was carefully scrapped off the exposed sediment surface in a horizontal

fashion using a plastic spatula.  Subsequently, core lithologies were visually described and cores

were subsampled in 10-cm intervals.  Subsamples were placed in labeled plastic bags for cold

storage and later analyses.



Quantitative stratigraphic analyses at 10-cm resolution and AMS radiocarbon dating of

the sediment cores were performed and are detailed elsewhere (Brown and Pasternack, in prep).

Sediment characteristics such as bulk density, grain size distributions, loss-on-ignition (LOI),

and magnetic susceptibility were measured for all core subsamples.  Non-linear radiocarbon and

calendar year age-depth models were developed by fitting a locally weighted function to the

reported dates. Vertical accretion (cm yr-1), sedimentation rates (g cm-2 yr-1), and chemical

loadings (mg cm-2 yr-1) were determined using the calendar age-depth model.

Chemical Analysis

Determination of the total elemental concentrations of every other sample (i.e. 20-cm

resolution) was carried out by Chemex Labs, Inc of Sparks, Nevada.  The procedure involved

drying the samples and sieving them through a #80 mesh to obtain the fraction smaller than

0.177 mm in diameter, treating them with hot concentrated nitric acid to destroy organic matter

and oxidize sulfide material, and adding concentrated hydrochloric acid (3 times the volume of

the nitric acid) to generate the aqua regia (3 HCl + HNO3 = 2 H2O + NOCl + Cl2) which was

used to digest the material.  After digestion sample solutions were analyzed by inductively-

coupled argon plasma and atomic emission spectroscopy to obtain the concentrations of 34

elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na,

Ni, P, Pb, S, Sb, Sc, Sr, Ti, Tl, U, V, W, Zn).  Because of the importance of Hg in this study, an

additional analysis of Hg was done by cold volatilization atomic adsorption spectroscopy

(detection limit 10 ppb).

Because sediment digestion was "total" for most base metals but only "partial" for most

major and minor elements, a reference soil sample (San Joaquin Soil Standard Reference



Material 2709) from the National Institute of Standards and Technology was also analyzed using

the same procedure.  The difference between the measured and known element concentrations

for the reference standard was the non-leachable fraction.  Because the reference material came

from a field close to the study site, its texture, composition, and thus leachable fraction should be

very similar to those for samples from the sediment cores.  Other than Al, elements showing very

poor leaching (< 50%) were excluded from further analysis.  Since leaching was only done on

fine material, Al should be locked in the mineral structure and hence stable throughout the

leaching process.  However, samples inevitably experience differential leaching.  To account for

this artifact, binary correlations between Al and all other elements were computed.

Concentrations of all elements showing a strong relation with Al were normalized by the

concentration of Al to remove the effect of leaching.  This is viewed as superior to simple

correction using the leaching percentages from the NIST reference, because the overall

composition may vary substantially from sample to sample and the Al correction accounts for

this variation whereas the NIST leaching percentages do not.

Chemical analyses were performed on dried samples that still contained organic material.

Because organic content strongly relates to fine sediment content and the latter also relates to

degree of leaching, it might have been difficult to distinguish whether changes in concentration

down-core are due to binding to organic matter or differential leaching, in general.  However,

based on the quantitative stratigraphic study (Brown and Pasternack, in prep), the organic

content of core strata fell into two categories- an organic wash load fraction composing 0-7% of

the total sediment and an organic, peat-like fraction composing 10-30% of the total sediment.

Because significant amounts of binding would be limited to the much higher content of peat-like

strata, organic binding was assessed by observing any significant increase in elemental



concentration in peat layers relative to non-peat layers.  Elements showing no peak in

concentration in peat strata were assumed to stem from the inorganic fraction, so their

concentrations were adjusted to an organic-free basis.

Data Analysis

Chemical compositions were analyzed to assess inter-elemental sediment geochemistry,

down-core strata-averaged trends in concentrations, and cross-core geochemical patterns.

Standard approaches were used investigate inter-elemental sediment geochemistry. A binary

correlation matrix was computed for each core to check for high correlations among elements

indicative of binding onto organic content, carbonates, Mn-oxides, and Fe-oxides.  Principal

components analysis (PCA) was also used to segregate variables into groups according to their

related chemical functionality for two datasets: a) raw concentrations for all elements and b) a

mix of raw concentrations and Al-normalized concentration where the latter was deemed

necessary.  The results of PCA include percent of variation explained, communalities, loadings,

and rotated loadings (using the 'varimax normalized approach').

Down-core trends were examined to assess the relation between geomorphic units and

geochemistry.  To do this, the objectively defined strata zonation of Brown and Pasternack (in

prep) based on a cluster analysis of LOI, fine sediment percentage, magnetic susceptibility, and

relative Al abundance was used to divide the core into distinct units.  The average concentration

or al-normalized concentration of well-leached constituents was calculated.  Finally, these values

were sorted in order of abundance and plotted, with a line for each strata.

Cross-core comparisons to assess the spatial pattern of the observed geochemistry were

done using two methods.  First, cross-core strata-averaged abundances were computed for each



strata type to test the hypothesis that spatial patterns in chemistry more strongly reflect strata

type than absolute depth.  Second, as a basis for comparison to the strata-averaged cross-core

patterns, elemental abundances were considered as a function of depth/time by plotting selected

elements for all three cores as a function of time/depth on a single plot to assess temporal cross-

correlations independent of stratigraphy.

Plots were assessed for peaks indicative of key events or long-term trends related to

climate variation, human activities, or landform changes.  Selective elements were plotted as a

function of time for all three cores on a single plot to assess cross-core patterns.  Concentrations

associated with distinct geomorphic units were calculated and compared across units.

RESULTS

Based on the NIST reference sediment from a nearby field, many elements showed

excellent recoveries (Table 1).  The only important elements that were very poorly leached were

Na and K. Ag was the only element significantly overestimated, likely because it was near the

detection limit, so it was excluded from further analysis.  Sr, Ba and Cr did not leach well, but

were further investigated to some extent using caution.  Recoveries of Cu and Zn were notably

better than previous studies (e.g. Velinski et al., 1999; Knight and Pasternack, 2000).

Inter-element Sediment Geochemistry

Aluminum was found to behave as a master variable controlling the first-order variations

in several elements due to the differential leaching, as expected.  Al concentrations closely

tracked fine sediment content for all cores (Figs. 2).  Even though samples were sieved to



exclude coarse sediment prior to chemical digestion, this trend suggests that some of the

differences in metal extraction could be due to grain size variations at the sub- 177 mm level.

When elements were plotted against aluminum, Fe, Ca, Mg, Cu, and Zn showed a strong direct

linear response to Al for all cores (Fig. 3-5).  Table 2 shows the R2-values for all elements, with

any value above 0.26 statistically significant above the 95% confidence level.  Key elements that

were not influenced by Al were Mn, S, P, Hg, Pb, and As.  Ni and Co showed a mixed response

and were investigated with and without normalization.

Al-normalized elements were compared against each other using a correlation matrix and

binary regressions.  No consistent evidence for Fe-oxide or carbonate binding of Mg, Cu, or Zn

was evident (Table 3; Fig. 6).  MWT-6 showed a strong role for Fe-oxide binding (Fig. 6c,d), but

MWT-2 and MWT-8 did not.  One interesting result was that the Zn/Cu rations for the cores

were 1.55, 2, and 1.65 for MWT-2, MWT-6, and MWT-8, respectively.  These ratios are much

lower than that commonly observed in wetlands (~4).  The difference appears to be due to higher

than normal Cu and slightly lower Zn.  These ratios occur throughout all core depths.

MWT-8 was the only core containing peat-like layers with plant fragments and organic

content >10 %.  When the concentration or Al-normalized concentration of each element present

in peat-like strata was averaged and compared against the inorganics-dominated strata average,

only S showed a significant difference.  The average S concentration in peat-like layers was 0.23

% whereas that in inorganic-dominated strata was 0.04 %.  This high presence of S suggests a

reducing redox state that might affect the remobilization of elements.  However, no other

elements show significant deviations in the peat-like strata relative to the inorganic-dominated

layers.



Principal components analysis (PCA) of the well-leached elemental concentrations for all

cores confirmed the dominant role of Al concentration in controlling down-core geochemical

variability.  For MWT-2 and MWT-6, half of the elements are predominantly explained by a

single component, which relates to Al, confirming the need for normalization (Table 4). Other

components do not account for much more than a single variable.  When PCA was performed on

the Al-normalized data to eliminate this effect, the cores show some role for Fe and Mn binding,

but nothing consistent between cores (Table 5).

Down-core Strata-Averaged Trends

Table 6 summarizes the distinct sequence of strata for each core, as described by Brown

and Pasternack (in prep).  When abundances of chemical constituents were averaged for each

strata, down-core differences were found to be strongly related with the type of strata rather than

absolute depth.  This strong chemical stratification points to limited remobilization of elements,

in addition to the evidence to this effect already described.

For MWT-2, the basal Pleistocene grey clay has a very distinct geochemical signature.

Even though its organic content is normal, it has an extremely high concentration of S (3.1 ppt),

whereas other strata in MWT-2 have no detectible S.  Associated with this S is a suite of higher

concentration constituents, including Mn, Mg, Hg, Cu, Zn, and Ni.  The origin of this layer is

unknown and the radiocarbon date for it is beyond the calibrated domain, but it is possible that

future isotopic analysis of S could reveal whether there was a marine component involved.  The

major sand channel unit in this core is notable for its relatively low abundance of Hg but high

abundance of As.  Distal floodplain fines show an intermediate abundance of constituents.  The



surficial layer has experience mixing due to agricultural plowing and it shows the highest

abundance of LOI, Al, Hg and Pb as well as the lowest abundance of Fe, Mg, and Ni.

Core MWT-6 has alternating sand channel and distal floodplain strata. Many chemical

constituents in this core show little difference among strata, including Al, Fe, Mg, S, Cu, Zn, Ni,

and Co.  the basal unit is a thick sand channel deposit that has relatively low LOI and Mn.  Sand

channel units show lower LOI, Al, Mn, and As relative to the distal floodplain strata.

Conversely, they show higher Fe and associated magnetic susceptibility.  Once again the

agriculturally impacted surface layer shows significant enrichment in LOI and Hg as well as low

abundance of Fe, Mg, and Ni.

Core MWT-8 is stratigraphically quite distinct from MWT-2 and MWT-6 in that it is

predominantly fine sediment and appears to have been tidally influenced for much longer, based

on its age-depth model and the regional Atwater sea-level rise curve.  The basal clay unit in this

core may be Holocene or Pleistocene, but in this case there is no enrichment in S.  The basal

layer is enriched in Ni, Fe, Mg, and Ca.  It has a low abundance of Al, P, and As.  The only sand

unit in this core shows no particular enrichment, but has a low abundance of LOI and Hg.  An

organic-rich wetland strata in the middle of the core that dates to 4100-5400 is very high in LOI

(up to 32 %) and S (2.1 ppt).  The surficial agricultural horizon is very highly enriched in Hg as

well as P, Mn, and As.

Cross-core Geochemical Patterns

Cross-core strata-averaged abundances of elements show highly distinct signatures for

the four broad classes of strata (Fig. 8).  Basal clays are high in S and associated metals that

precipitate in a reducing redox condition, including Fe, Mg, Ca, Zn, Cu, Ni.  Sand channel units



are relatively low in all chemical constituents except for Fe and As.  The agriculturally impacted

surface layer in all cores is highly enriched in Hg, As, Co, and somewhat enriched in Pb and Al.

It has the lowest abundance in Fe, Mg, and Ca.  Distal floodplain units are intermediate in all

constituent abundances.

Elemental abundances plotted as a function of time confirm that the cores show very little

synchronous geochemical fluctuation (Fig. 9).  The only elements whose abundances do change

among all cores at least in some periods are Hg, P, and As.  In the case of Hg, all cores show a

dramatic increase in concentration from below 50 ppb to greater than 200 ppb.  MWT-8 peaks at

438 ppb.  These peaks coincide with the surficial agriculturally-disturbed layer, which ranges in

depth from 30 cm in MWT-2 to 120 cm in MWT-8.  Because of the mixing, the associated age of

the sediment is not correct and should not be used to suggest that the increase in Hg pre-dates

human activity.  According to the history recorded in the cores, Hg was at least 3 times lower

throughout the past relative to its present concentration.  In the case of P, all cores show a

relative abundance in the agriculturally impacted surficial layer.  MWT-6 has very high

abundances of P in distal floodplain fine sediments dating to 7000-8000 years ago as well as Ca

during that period.  Arsenic is generally not detected throughout much of the cores, but there are

some notable concentrations in the agricultural horizon and in ancient sand channel units.  All

cores show an uptick in the agricultural horizon.  MWT-2 shows two peaks in sand channel units

and MWT-6 shows a peak in one sand channel unit.

Other elements do show temporal fluctuations, and some of these clearly respond to

stratigraphic controls, but others are difficult to explain at this time (Fig. 9).  For example,

MWT-8 shows very high concentrations of S in peat-like layers mid-core.  Also, Mg shows a



distinct drop in MWT-2 and MWT-8 in the tops of these cores.  On the other hand, Cu and Zn

show frequent fluctuations that do not reflect stratigraphy.

DISCUSSION AND CONCLUSION

The three MWT cores analyzed in detail in this study largely show the typical bulk

geochemical interrelationships that are well known.  The cost of total sediment digestion or

incremental digestion could not be afforded, but careful assessment and adjustment for partial

leaching effects was highly successful and enabled the comparison of different elements.

Aluminum and grain distribution were found to act as master variables controlling the first order

dynamics in the cores.

All cores were found to have low organic content and thus show little trapping of

constituents in reducing redox strata.  The only peat-like deposits found occurred in MWT-8 and

they dated to 4000-5000 years old.  These layers were highly enriched in S and thus were very

likely reducing in their redox.  However, no other elements show significant deviations in the

peat-like strata relative to the inorganic-dominated layers.  This is strong evidence that the

sediments have experienced little mobilization and re-deposition of constituents in the last 4000

years.  Thus, the geochemistry of core strata are largely intact, so observed signatures can be

confidently attributed to their original condition.

Unlike what is commonly seen in wetland cores, the MWT cores show extremely

different geomorphic and geochemical conditions at any given time from core to core.  In the

cores, deposits of the same type are almost never synchronous.  Thus, geochemistry should be

understood in terms of strata-averaged conditions with a comparison of geochemistry within and

between strata types.  The MWT cores show much less within strata than between strata



variation in geochemistry.  Almost all elements show a preference for one strata type or another,

as detailed earlier.

Pleistocene deposits dating to more than 10,000 years ago take the form of either

chemically-enriched clays or sand channel units.  For the last 10,000 years (i.e. the Holocene),

MWT has been an alluvial floodplain.  Major channels cut across the floodplain producing two

endmember stratigraphic units- sand channel units and distal floodplain fine units.  These units

are chemically distinct, with the channels relatively low in Hg, Al, S, and LOI and high in Fe,

As, and Ni.  Each core shows an independent sequence of channels and distal floodplains, with

each unit representing ~1000-2000 years.  Because of this differential in local geomorphic

process, the elevation and thus position relative to sea level of each core is very different.

MWT-8 was at sea level 6000-8000 years ago and S-enriched (~2.3 ppt) wetlands formed at that

time.  MWT-6 has been well above sea level until very recently.  It has alternating sand and fine

units with lower abundances of some elements in the sands and lower abundances of other

elements in the fines.  MWT-2 is intermediate between MWT-6 and MWT-8 in its elevation, but

also shows channel-distal floodplain banding and the associate geochemistry.

The one thing that all cores have in common without any doubt is elevated Hg and As in

the agriculturally impacted surface layer.  Because of plowing, the last 2000 years of sediment

record has been totally jumbled up, so the age-depth model cannot be applied in this zone.  Corn

pollen- a distinct signature of agriculture that was not present before human agriculture in this

area- is present throughout this zone, and proves that the observed peaks in the toxic elements

Hg and As does not pre-date human intervention in the system.  This is not to say that the Hg

derives from agriculture, but that it derives at the same time since agriculture has been occurring.

The total abundance of Hg of ~200-400 ppb is significantly higher than that reported for



Sacramento Valley sloughs, and is on the high side relative the Sacarmento basin river stream

bed sediment (Domagalski, 2001).  This suggests that under reducing conditions that result from

wetland restoration there would be a potential reactively available concentration of up to 32 ppb,

which poses a significant bioaccumulation hazard.  It would take further research, perhaps

incubation of wetland conditions using surficial sediment samples in a lab setting to know for

sure.
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Element units Chemex NIST Leach (%)
Ag ppm 0.6 0.41 146
As ppm 18 17.7 102
Cd ppm <0.5 0.38 b.d.
Cu ppm 33 34.6 95

S % 0.08 0.089 90
Co ppm 12 13.4 90

P ppm 530 620 85
Ni ppm 75 88 85
Zn ppm 90 106 85

Mn ppm 445 538 83
Fe % 2.86 3.5 82

Mg % 1.22 1.51 81
Ca % 1.41 1.89 75
Hg ppb 1040 1400 74
Pb ppm 10 18.9 53

Mo ppm 1 2 50
Sr ppm 111 231 48
V ppm 52 112 46

Cr ppm 55 130 42
Sc ppm 5 12 42
Ba ppm 380 968 39
Al % 2.05 7.5 27
K % 0.3 2.03 15
Ti % 0.03 0.342 9

Na % 0.07 1.16 6

Table 1. Differnetiation of elements that 
were poorly leached (<50%).



Element MWT-2 MWT-6 MWT-8
Fe 0.41 0.58 0.11
Ca 0.43 0.39 0.51
Mg 0.29 0.68 0.33
Mn 0.02 0.38 0.44
S 0.01 0.01 0.02
P 0.14 0.02 0.24

Cu 0.62 0.88 0.52
Zn 0.61 0.84 0.72
Hg 0.22 0.08 0.23
Pb 0.13 0.05 0.54
As 0.00 0.01 0.31
Ba 0.23 0.88 0.52
Co 0.00 0.40 0.14
Cr 0.64 0.82 0.57
Ni 0.28 0.78 0.20
Sr 0.58 0.57 0.41

Table 2. R2-values for correlation of 
each element against Al. Values >0.26 
exceed the 95% confidence level. 
Shaded values >0.5.



A) MWT-2

Fe Ca Mg Cu Zn
Fe X 0.44 0.22 0.20 0.30
Ca X X 0.12 0.05 0.24
Mg X X X 0.24 0.66
Cu X X X X 0.38
Zn X X X X X

B) MWT-6

Fe Ca Mg Cu Zn
Fe X 0.00 0.49 0.27 0.37
Ca X X 0.07 0.03 0.00
Mg X X X 0.19 0.19
Cu X X X X 0.06
Zn X X X X X

C) MWT-8

Fe Ca Mg Cu Zn
Fe X 0.00 0.10 0.14 0.10
Ca X X 0.04 0.21 0.14
Mg X X X 0.07 0.54
Cu X X X X 0.09
Zn X X X X X

Table 3. Correlation matrix (R2) for Al-
normalized elements



A) MWT-2

  Variable PC1 PC2 PC3 PC4 PC5
Al 0.741 0.018 -0.262 0.432 0.016
Fe 0.884 -0.124 0.181 0.115 0.046
Ca 0.837 -0.005 0.256 0.077 0.123
Mg 0.924 0.078 -0.054 -0.131 0.009
Mn 0.047 0.099 0.906 -0.059 0.019
S -0.419 -0.458 0.112 -0.307 0.265
P 0.433 -0.101 0.352 0.588 0.009
Cu 0.911 0.056 -0.008 0.212 -0.052
Zn 0.932 0.170 -0.035 0.225 -0.037
Hg 0.008 0.196 -0.097 0.878 0.033
Pb -0.074 0.010 0.014 -0.037 -0.963
As -0.017 -0.884 -0.196 -0.157 0.014
Co 0.212 -0.620 0.536 0.138 -0.119
Ni 0.901 -0.161 0.249 -0.023 0.008
  Prp.Totl 0.415 0.108 0.109 0.113 0.074

B) MWT-6

  Variable PC1 PC2 PC3
Al 0.952 -0.024 0.079
Fe 0.841 0.145 0.168
Ca 0.638 0.397 0.202
Mg 0.867 0.230 0.162
Mn 0.674 0.460 0.182
S -0.111 -0.594 -0.143
P 0.207 0.713 -0.159
Cu 0.925 -0.027 0.086
Zn 0.935 0.091 -0.014
Hg -0.140 0.351 -0.806
Pb -0.305 0.545 -0.079
As 0.100 0.417 0.692
Co 0.780 -0.024 0.029
Ni 0.913 -0.144 0.030
  Prp.Totl 0.470 0.138 0.095

C) MWT-8

  Variable PC1 PC2 PC3 PC4
Al 0.508 0.313 0.657 0.239
Fe 0.129 0.905 -0.019 -0.024
Ca 0.378 0.143 0.739 -0.159
Mg 0.903 0.140 0.129 -0.120
Mn 0.071 0.666 0.690 0.024
S 0.104 0.318 -0.413 -0.725
P 0.054 0.797 0.343 -0.002
Cu 0.574 -0.240 0.694 0.181
Zn 0.712 0.339 0.551 0.069
Hg -0.156 0.499 0.651 -0.009
Pb 0.186 0.122 0.862 0.087
As -0.164 -0.119 0.128 -0.830
Co 0.583 0.130 0.027 0.341
Ni 0.901 -0.136 0.185 0.037
  Prp.Totl 0.238 0.187 0.269 0.105

Table 4. Principle Components determined using raw concentrations of all well-
leached elements. Shading indicates elements that are stronly controlled by the 
associated component.



A) MWT-2

  Variable PC1 PC2 PC3 PC4 PC5
Al -0.392 0.835 -0.124 0.050 0.035
S 0.253 -0.568 -0.241 0.387 0.159
P 0.277 0.771 0.066 0.007 0.104
Hg -0.061 0.524 -0.450 -0.403 0.039
Pb 0.021 0.008 -0.026 -0.015 -0.985
As -0.036 -0.093 -0.120 0.919 0.010
Fe/Al 0.783 -0.220 0.399 0.035 0.000
Ca/Al 0.774 -0.222 0.289 -0.124 0.100
Mg/Al 0.063 -0.105 0.913 -0.049 0.006
Mn 0.867 0.020 -0.041 -0.166 -0.032
Cu/Al 0.291 0.492 0.669 0.060 0.013
Zn/Al 0.303 0.065 0.856 -0.270 0.018
Co/Al 0.783 -0.077 0.113 0.337 -0.073
Ni/Al 0.678 0.004 0.603 0.142 0.040
  Prp.Totl 0.242 0.201 0.195 0.096 0.070

B) MWT-6

  Variable PC1 PC2 PC3 PC4 PC5
Al 0.876 0.251 0.143 0.160 0.042
S 0.058 -0.565 0.259 0.000 -0.208
P -0.007 0.823 0.184 -0.205 0.048
Hg 0.003 0.133 0.091 -0.896 -0.180
Pb -0.229 -0.062 -0.204 -0.551 0.581
As 0.174 0.161 0.060 0.225 0.731
Fe/Al -0.848 0.127 -0.324 0.019 -0.058
Ca/Al 0.003 0.354 0.089 -0.010 0.644
Mg/Al -0.795 0.300 -0.145 -0.010 0.182
Mn 0.035 0.800 -0.142 0.046 0.173
Cu/Al 0.783 0.054 -0.262 0.107 0.246
Zn/Al -0.476 0.159 -0.527 -0.331 0.031
Co/Al -0.277 0.161 -0.812 0.077 -0.105
Ni/Al 0.606 -0.120 -0.740 0.053 0.020
  Prp.Totl 0.292 0.137 0.125 0.091 0.100

C) MWT-8

  Variable PC1 PC2 PC3 PC4 PC5
Al 0.842 -0.190 0.326 -0.258 0.059
S -0.343 0.152 -0.061 0.257 0.801
P 0.263 -0.141 0.742 -0.081 0.367
Hg 0.076 -0.091 0.878 0.032 -0.135
Pb 0.710 -0.177 0.471 0.026 -0.217
As -0.164 0.088 0.065 0.739 0.044
Fe/Al -0.859 0.130 0.107 0.161 0.133
Ca/Al 0.174 0.150 0.047 0.859 0.195
Mg/Al -0.224 0.771 -0.273 0.209 0.303
Mn -0.428 -0.054 0.708 0.427 -0.083
Cu/Al 0.548 0.453 -0.228 0.448 -0.375
Zn/Al -0.145 0.852 0.148 0.229 0.231
Co/Al -0.363 0.565 -0.101 -0.137 -0.307
Ni/Al 0.090 0.930 -0.185 0.063 -0.099
  Prp.Totl 0.238 0.192 0.158 0.133 0.088

Table 5. Principle Components determined using raw or Al-normalized 
concentrations as indicated.  Shading indicates elements that are stronly 
controlled by the associated component.
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Figure 1. A) Regional location map showing the location of the study site (star). B) Map of the 
Sacramento-San Joaquin Delta. The McCormack-Williamson tract is located within box. C) Core 
locations on the McCormack-Williamson tract.   
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Figure 2. Relations between Al concentration and fine sediment content for
               MWT-2 (a,b), MWT-6 (c,d), MWT-8 (e,f)



Figure 3. MWT-2 relations between Al and other elements indicating differential leaching
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Figure 4. MWT-6 relations between Al and other elements indicating differential leaching
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Figure 5. MWT-8 relations between Al and other elements indicating differential leaching
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Figure 6. Assessment of Fe-oxide control on element abundances after normalizing by Al.



Figure 7. Strata-averaged abundance of elements in descending order for each core. Reds denote sand 
channel units, blues denote fine floodplain and delta units, greens denote ag-impacted units, others 
denote old clay units.
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ABSTRACT 

 Tens of millions of dollars have been spent on land acquisition and planning for 

wetland restoration on the upper deltaic plain of the Sacramento-San Joaquin Delta 

(SSJD).  This study sought to assess the historical spatio-temporal variability of habitat 

conditions during the last 4,000 years (i.e. the late-Holocene interval) to help guide 

restoration by checking assumptions used in planning, design, and analysis.  From a basic 

science perspective, it also sought to improve the understanding of habitat heterogeneity 

on an upper deltaic plain subject to pre- and post-land use change.  Twelve sediment 

cores were collected from the McCormack-Williamson Tract (MWT) leveed farmland 

and Delta Meadows (DM) tidal wetland in the upper deltaic plain of the SSJD.  Multiple 

environmental proxies were obtained from the cores to assess habitat spatio-temporal 

variability.  Floodplain predominately characterized MWT during the late-Holocene as 

evidenced by sedimentary and geomorphic structures preserved in deposited sand, silt, 

and clay.  Pollen analysis reveals that a mosaic of habitats persisted in the region in the 

past.  Dry upland sites supported Pinus woodlands whereas local riparian forests of 

Quercus and Salix lined the river edges.  Composites colonized the expansive floodplains 

and freshwater wetlands of Cyperaceae and Typha were widespread.  Comparison against 

the regional sea-level history suggests that the upper delta came under tidal influence 

within the last 2,500 years.  Despite this observation, floodplain landforms and habitats, 

not those of tidal wetlands, prevailed at DM from 3,650-280 calendar years after which 

wetlands are observed to expand.  In recent times, the upper deltaic plain at MWT has 

been profoundly disturbed by agriculture and other human activity.  Pollen flux shows a 

dramatic decline in overall productivity, likely related to landscape modification and loss 
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of habitat.  An increase in Zea and Chenopodiaceous pollen in the agricultural horizon 

testify to the changing nature of the landscape as riparian forests, floodplains, and 

wetlands were destroyed or converted to crop fields.  At DM, sedimentation rates and 

organic accumulation are shown to increase concurrently with the recent wetland 

expansion.  Pollen from DM records the local existence of different habitats.  The 

concentrations of Hg, Pb, and As pollutants as well as P are elevated several-fold in the 

study area’s surficial sediments at all coring locations compared to late-Holocene 

background levels, with unknown implications for restoration.  The significance of these 

findings is that restored upper Delta wetlands will face a high-energy floodplain-type 

disturbance regime that will preclude simple stability by design for any given site. Also, 

it is imperative that research be performed right away to determine the significance of the 

pollution in Delta Meadows so this may serve as a template of what to expect in restoring 

Delta tracts. 

 

Keywords: California, floodplain, delta, tidal freshwater wetland, agriculture, grain-size, 

pollen, pollutants 
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INTRODUCTION 

The Californian landscape and associated waterways have experienced profound 

modification during the last 150 years.  Forests of the Sierra Nevada have been actively 

logged since the mid-nineteenth century (Mudie and Byrne, 1980; Barbour et al., 1998) 

and fire disturbance has been suppressed since 1925 (Biswell, 1989; Taylor, 1998; 

Minnich et al., 2000).  At lower elevations, the Central Valley that once flourished with 

native grasses (Jepson Prairie Docent Program, 1998) has been almost completely 

converted into agricultural land.  Logging profoundly increased watershed erosion and 

the delivery of sediment to rivers (Lewis, 1998).  Hydraulic gold mining in the Sierra 

Nevada in the late 1800's had a devastating impact as slopes were destabilized, river 

channels redirected and aggraded, and the San Francisco Bay estuary disturbed (Gilbert, 

1917; Nichols et al., 1986).  The sediment that was mobilized by hydraulic mining was 

rapidly and widely deposited in San Francisco Bay (Jaffe et al, 1998).  At present, more 

than 60% of the rivers flowing out of the Sierra Nevada toward the Pacific Ocean are 

dammed primarily for water supply and secondarily for flood control, electric power 

generation, and recreation.  Increased salinity noted in the San Francisco Estuary since 

1860 is likely related to the upstream storage and diversion of water (Byrne et al, 2001). 

In coastal regions, the impact of short-term human activity is particularly acute 

(Nichols et al, 1986).  Ninety-one percent of California’s wetlands were destroyed (Dahl, 

1990).  Many wetlands, such as those in the Sacramento-San Joaquin Delta (SSJD), were 

extensively leveed and drained, thus exposing regularly inundated and buried organic 

matter to oxidizing conditions.  In addition to the direct loss of wetland habitat, the 

ensuing oxidation caused significant subsidence in the delta (Atwater and Belknap, 
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1980).  Statewide efforts are now underway to improve ecosystem health and reduce 

flood-damage losses by rehabilitating degraded habitats and restoring lost landscapes. 

Past research on the San Francisco Bay estuary has focused on such diverse issues 

as the evolution of the estuary (Atwater, 1979; Atwater et al., 1979), river inflow and 

salinity (e.g. Ingram et al., 1996; Goman and Wells, 2000; Byrne et al., 2001), salt marsh 

vegetation communities and landforms (e.g. Atwater et al., 1979; Malamud-Roam and 

Ingram, 2001), as well as the impacts of deleterious human activity (e.g. Nichols et al., 

1986; Jaffe et al. 1998; van Geen and Luoma, 1999).  Tidal wetland deposits and 

vegetation communities in the SSJD have been thoroughly investigated by Atwater 

(1980) and Atwater and Belknap (1980).  Together, these investigations provide critical 

insight into the estuary-delta interface.  More recently, Florsheim and Mount (2002) and 

Tu (2000) investigated floodplain evolution and riparian forest succession at sites 

upstream of the SSJD and show that flooding generates variable floodplain relief, 

features, and habitat.  Unfortunately, unlike the estuary, lower delta, and upland 

floodplains, the upper deltaic zone has received little attention. 

The upper delta is uniquely positioned in a tidal freshwater zone that experiences 

both riverine and tidal influence, rendering a complex combination of processes.  Work 

by Brown and Pasternack (submitted) reveals that the upper deltaic plain in the SSJD is 

characterized by biogeomorphic profiles that are highly variable through time.  They 

show that flooding was an important disturbance agent prior to levee construction and 

that the modern upper deltaic plain in the SSJD is relatively young, only coming under 

tidal influence during the last few millennia. 
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The basic research presented in this contribution is part of a larger restoration 

project that aims to convert upper deltaic floodplain tracts currently used for agriculture 

to tidal wetlands by breaching levees.  The restoration project generally assumes that 

such tracts were tidal wetlands historically and ought to be that way now.  The ultimate 

goal of successful restoration requires an understanding of how such wetlands evolved 

because this information can provide critical insight into post-restoration disturbance 

regimes, site stability, and potential impacts of land use change.  Existing basic research 

on these topics is limited to and primarily comes from the Atlantic Coast (e.g. Orson et 

al., 1992; Khan and Brush, 1994; Pasternack et al. 2001).  Thus, we sought to document 

the variability and recent evolution in the upper deltaic plain with particular attention 

paid to tidal freshwater wetlands.  In addition, concern has been raised about the impact 

of wetland restoration on organic Hg toxicity due to reduction and bioactiviation of 

inorganic Hg pollution derived from the gold mining era.  We sought to address this 

concern within the context of the historical analysis to ascertain the pre- and post-mining 

levels of Hg and other pollutants. 

The overall objective of this contribution is to characterize the spatial variability 

of an upper deltaic plain and to document environmental perturbation associated with 

distal land use change and local agriculture.  Specifically, we aim to (1) develop an age-

depth model for the site; (2) document changes in late-Holocene sedimentation rates and 

the relative role of watershed flux versus in situ organic accumulation, (3) examine 

topographic, landform, and habitat variability through time, and (4) quantify the level of 

toxic metal (Hg, Pb, and As) and phosphorus nutrient pollution at the site.  Once these 

objectives are fulfilled, we combine that information to describe the evolution of the site 
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and contrast the late-Holocene interval that was not profoundly disturbed by humans with 

the upper cores sections that record both immediate and distal human-induced 

disturbance.  Paleoenvironmental reconstruction is the primary tool for investigating past 

hydrogeomorphic conditions (Orson, 1996) and it will be employed here. 

 

SETTING 
 

The McCormack-Williamson Tract (MWT; Fig. 1) is owned by The Nature 

Conservancy, a nonprofit, tax-exempt corporation that has preserved more than 37 

million ha of land and water worldwide, and is slated for full-scale restoration to tidal 

freshwater and floodplain habitat consistent with the tract’s landscape position.  This site 

has been targeted for restoration because it is the downstream terminus of the well-

protected Cosumnes River and could yield critical tidal freshwater wetland habitat that 

has been all but eradicated from the region.  Because the Cosumnes River is undammed 

and its floodplains are being passively restored using levee breaches in the zone upstream 

from MWT (Florsheim and Mount, 2002), it is anticipated that historical processes 

including tidal exchange, channel migration, seasonal overbank flooding, and sediment 

transport and deposition can be partially to fully restored to MWT.  It is further hoped 

that the restoration of fluvial and geomorphic processes to the site will create aquatic and 

riparian habitats favorable to native wildlife and fish species.  The tidal influence is 

significant because one of the restoration objectives is to generate functional tidal 

freshwater habitat with associated aquatic and riparian habitat.  Delta Meadows (DM) is a 

tidal freshwater wetland that is located just west of MWT.  It is diurnally saturated by 1-

1.4 m tides and dominated by Scirpus. 



 8

The study site has been highly impacted by human activity and the modern 

landscape bares only little resemblance to historical conditions (United States Geological 

Survey, 1911).  Limited riparian vegetation can be found along the levees impounding 

MWT.  Some of the more common trees found at the site include Quercus lobata (valley 

oak), Populus fremontii (Fremont cottonwood), Platanum racemosa (western sycamore), 

Acer negundo (box elder), Fraxinus latifolia (Oregon ash), and Alnus rhombifolia (white 

alder).  Many trees are enveloped with Vitis californica (California grape) and 

Arceuthobium (mistletoe).  Common understory shrubs include include Rosa californica 

(California rose), Rubus discolor (himalayaberry), and several species of Salix.  

Cephalanthus occidentalis (bottonbush) was noted close to the channels and 

Chenopodium ambrosioides  (Mexican tea) occupies open disturbed sites.  Nearby 

wetlands consist predominately of Scirpus acutus (common tule). 

 

METHODS 

Field Methods and Core Processing 

To characterize the spatio-temporal variability of the upper delta plain, 12 

sediment cores (MWT-1 to MWT-11 and DM-1) were collected.  The MWT cores were 

distributed over the surface of the tract for maximum coverage, whereas DM-1 was 

collected from DM (Fig. 1).  A second core was collected from DM, but was found to be 

identical to the first one upon further examination.  Of the 11 cores collected from MWT, 

3 cores (MWT-2, -6, -8) were analyzed for a suite of proxy environmental indicators 

including bulk density, loss-on-ignition (LOI), magnetic susceptibility, grain-size, 

geochemistry, and pollen.  The vibracore DM-1 was similarly analyzed.  The remaining 8 
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MWT cores were visually described and archived for possible future analysis. 

Stratigraphic description of the cores provides tentative insight into the recent 

spatial variability of the study site (Fig. 1).  We elect to present only the top 200 cm of 

core stratigraphy in figure 1 because according to the age-models presented by Brown 

and Pasternack (submitted) and in this contribution (reported later), the top 200 cm can 

represent between 4,700-1,700 years of depositional history.  Thus, if we present more 

than 200 cm of record we would be documenting mid-Holocene history at some sites but 

not at others and, similarly, less than 200 cm of record would result in only the latest late-

Holocene profiles at some sites.  The 200 cm cutoff is the most accommodating selection 

given our understanding of the age-depth relationships of the cores that were dated. 

  The MWT cores were all collected incrementally using a Geoprobe drilling rig 

that enabled the retrieval of coarse sediment in 122 cm long plastic liners.  Sediment 

compaction or expansion during coring was measured as the difference between pushed 

distance and core length on a section-by-section basis.  Delta Meadows was vibracored 

because it was physically and legally challenging to take the Geoprobe coring rig into this 

protected wetland.  Vibracoring obtains continuous sediment by vibrating a core barrel 

into the substrate.  The vibracore consisted of an aluminum tube, a small Honda motor, 

and a vibrating hose.  The tube was vertically erected and driven into the ground via 

vibrations that were generated by the motor and transferred to the tube by the vibrating 

hose.  The vibracore easily cut through organic layers but had difficulty penetrating 

inorganic dominated sediment.  Compaction was noted as the difference between the 

distance pushed and sediment recovered.  The vibracore was manually extracted using an 

old-style “bumper” car jack. 
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All cores were stored in a cold room at ~4 °C. Cores were split longitudinally 

using a circular saw and a nylon string was passed down the middle to split the sediment.  

Any smeared sediment was carefully removed using plastic spatulas and the cores were 

photographed and visually described.  MWT-2, -6, -8 and DM-1 had plastic u-channels 

pushed longitudinally into each core section to retrieve samples for magnetic 

susceptibility.  The u-channels were transferred to a magnetics laboratory where the 

sediment was measured for susceptibility using a Bartington MS-2 magnetometer.  All of 

the MWT cores were then subsampled in 10-cm intervals whereas DM-1 was subsampled 

in 4-cm intervals because it was a shorter core and higher resolution was sought for the 

preserved wetland history.  Sediment bulk density (g cm-3) was determined for all cores 

at this time by weighing a subsample and measuring its volumetric displacement in a 50 

ml graduated cylinder.  The subsamples were placed in labeled plastic bags for cold 

storage. 

 

Analytical Methods 

MWT-2, -6, -8 and DM-1 had samples sent to Beta Analytic Inc., Florida for 

accelerator mass spectrometry (AMS) radiocarbon dating (Table 1).  The radiocarbon 

dates were converted to calendar ages using a calibration program (Stuiver and Reimer, 

1993).  Non-linear age-depth models were developed for these cores by fitting a locally 

weighted smoothing function to the reported dates (Fig. 2).  Subsequent measurements of 

sedimentation rates (g cm-2 yr-1), organic accumulation (g cm-2 yr-1) and pollen flux 

(grains cm-2 yr-1) were determined using the established age-depth model. 
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Following determination of down-core trends in bulk density and magnetic 

susceptibility, the cores were sampled for loss-on-ignition (LOI).  Samples were weighed 

wet, dried overnight at 60 oC, and weighed dry, yielding the water content of the sample.  

Next, the dried sample was combusted for 6 hours at 600 oC in a muffle furnace and 

reweighed, yielding the organic matter content. 

Grain-size percentages were determined for each sample using methods adapted 

from Folk (1974) coupled with empirical measurements by a laser granulometer.  

Organics were initially removed from the samples using 30% hydrogen peroxide (Black, 

1965; Pasternack and Brush, 2002).  Next, the samples were suspended in 500 ml 0.5% 

sodium metaphosphate to disaggregate particles and passed through a 63 µm sieve to 

separate sands from fines (silt and clay).  Sands were collected, rinsed, dried, and 

weighed to determine total mass of sand.  The fines suspended in the sodium 

metaphosphate were retained after wet separation and subsequently transferred into a 

graduated cylinder to determine total suspended volume.  The fines were then transferred 

into a plastic bottle that was vigorously shaken to homogenize the suspension.  Two 20-

ml subsamples of the suspended fines were collected rapidly before any sediment settling 

occurred in the bottle.  One of the subsamples was pipetted into a weighing dish, dried, 

and weighed.  The subsample mass was calculated as the dry mass minus the mass of 20-

ml of 0.5% sodium metaphosphate.  The total mass of fines was calculated by 

multiplying the mass of the dry fines in the 20-ml pipetted subsample by the total volume 

of the sample divided by the subsample volume.  The other 20-ml subsample was placed 

in a laser granulometer to determine the relative percentages of silt and clay in the sample 

and these values were then multiplied by the mass of the fines to determine the mass of 
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silt and clay.  The mass of the measured sand, silt, and clay relative to the total mass of 

the sample was used to determine the relative percentage of sand, silt, and clay in the 

sample. 

Information about habitat variability in the upper delta was realised through 

pollen analysis.  Pollen preparation followed standard procedures (Moore et al., 1991; 

Brown and Hebda, 2002).  All pollen samples were spiked with lycopodium tablets 

containing 10,679±953 spores each (University of Uppsala, Quaternary Geology 

Department, Batch Number 938934) so pollen flux could be calculated.  Fossil pollen 

was measured and identified using a Nikon Eclipse E200 microscope at 400x 

magnification and the University of California Museum of Paleontology Pollen 

Reference Collection respectively.  Because pollen was rare in some levels, we have 

elected to present the pollen data as flux instead of relative percentages.  Pollen flux was 

determined using the number of lycopodium spores encountered compared to the number 

of pollen grains multiplied by the sedimentation rate to yield grains cm-2 yr-1.   

Determinations of the Al, P, Hg, Pb, and As elemental concentrations with 20-cm 

resolution for MWT and 4-cm resolution for DM were carried out by Chemex Labs, Inc 

of Sparks, Nevada.  The procedure involved drying the samples and sieving them through 

a #80 mesh to obtain the fraction smaller than 0.177 mm in diameter, treating them with 

hot concentrated nitric acid to destroy organic matter and oxidize sulfide material, and 

adding concentrated hydrochloric acid (3 times the volume of the nitric acid) to generate 

the aqua regia (3 HCl + HNO3 = 2 H2O + NOCl + Cl2) which was used to digest the 

material. Total sediment digestion was achieved for all elements except Al, as assessed 

using a nearby reference soil sample (San Joaquin Soil Standard Reference Material 
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2709) from the National Institute of Standards and Technology processed using the same 

procedure.  After digestion sample solutions were analyzed by inductively-coupled argon 

plasma and atomic emission spectroscopy to obtain the concentrations of Al, P, Pb, and 

As.  Hg was analyzed by cold volatilization atomic adsorption spectroscopy to achieve a 

detection limit of 10 ppb. Final concentrations were adjusted for their organic content to 

give an organic-free concentration to eliminate this source of difference in the analysis. 

Anthropogenic enrichments were calculated as the element ratio of the top-most sample 

to the average of the deepest samples from the 4,000-3,000 calendar years before present 

(cal BP) interval with measurable concentrations for each core.  Documentation of 

pollutants in the cores, as indicated by elevated enrichment ratios, can either be indicative 

of the age of pollution onset or the limit of stratigraphic consideration if core sediment 

has been mixed by tilling. 

MWT-2, -6, and -8 were previously zoned using a stratigraphically constrained 

clustering algorithm (Brown and Pasternack, submitted).  The parameters used for zoning 

included LOI, magnetic susceptibility, percentage fines (silt and clay), and Al percentage.  

These variables were selected because they are continuous throughout the cores and not 

modified by down-core compaction.  DM-1 is similarly clustered and zoned in this 

contribution. 

 

RESULTS 

Because the cores are widely distributed over MWT and DM (Fig. 1), it is 

possible to examine the general spatial characteristics of the site through time 

culminating in agricultural landscape utilization, though this is tempered somewhat 
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because only 4 of the 12 cores were radiometrically dated (Table 1).  The results of this 

investigation are divided into several sections.  First, the stratigraphic profiles from the 

upper 200 cm of all of the cores are examined to provide tentative insight into the spatial 

variability and evolution of the area.  Next, a late-Holocene age-depth model for the 

radiometrically dated MWT-2, -6, and -8 cores and DM-1 is described and the temporal 

changes in sedimentation rates, organic accumulation, grain-size are examined.  After 

that, MWT cores are examined in greater detail because their established chronologies 

enable greater insight into the temporal variability of the site during the last 4,000 years 

and to provide a basis for comparison against DM.  Brown and Pasternack (submitted) 

described the entire Holocene records for MWT-2, -6, and -8, so only the pre- and post-

agriculture characteristics are summarized in Table 2 for these cores.  Finally, previously 

undescribed DM-1 stratigraphy and core characteristics are presented in detail (Table 2). 

 

Landform Evolution 

The general predominance of silt and clay with some sand in all MWT cores 

below the upper mixed layer (Fig. 1) together with a lack of organic material suggests 

that the tract was mainly floodplain below the agricultural horizon.  Variations in the 

color of the sediment and the degree of mottling between cores are due to past local 

conditions specific to each coring site.  Isolated parcels containing sand are noted in 

MWT-2 and MWT-10 at about 163-148 and 200-178 cm depth respectively and these 

deposits may reflect sand splays.  The thin layer of gravel observed in MWT-8 at about 

58-52 cm depth is not considered a paleochannel deposit because it is too thin.  Instead, it 

may reflect either splay deposition or possibly human land use.  Contrary to the 
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expectation from Atwater and Belknap’s (1980) investigation of delta cores two decades 

ago, the agricultural topsoil noted in the MWT cores is surprisingly thin, often 

penetrating only 20-30 cm deep.  In comparison, the basal section of DM-1 also consists 

of fine floodplain sediment (Figs. 1 and 3), though these are replaced up-core by wetland 

peat.  Agricultural topsoil is not observed in the DM-1 core. 

The age-depth model (Fig. 2), based on radiocarbon dates in Table 1, reveals that 

the DM-1 core is considerably shallower compared to the MWT cores.  Over the last 

3,650 years, the elevation of DM-1 was always less than MWT-6.  In contrast, the 

elevation of DM-1 was greater than those of MWT-2 and MWT-8 between 3,500-700 cal 

BP, after which the surface elevations of these cores converged.  MWT-2 and MWT-8 

have had remarkably similar elevations during the late-Holocene.  Mean higher high 

water is  ~0.5-0.7 m above mean sea level in this region, implying that the study area may 

have first experienced small tides ~2,500 cal BP (Fig. 2).  All core sites appear tidal by 

~750 cal BP, a relatively recent phenomenon given the long-term evolution of MWT 

(Brown and Pasternack, submitted).  The slopes of the accretion rate curves are not equal 

to that of the relative sea level rise curve until ~ 500 years ago. 

In general, sedimentation rates (Fig. 4) gradually increase in DM-1, decrease in 

MWT-6, and remain roughly constant in MWT-2 and MWT-8 through time.  Between 

3,500-1000 cal BP sedimentation rates in DM-1 hover around 0.05 g cm-2 yr-1, but then 

increase during the last 1,000 years to modern values of 0.15 g cm-2 yr-1.  In MWT-6, 

sediment accumulation decreases through time from 0.1 g cm-2 yr-1 at 4,000 cal BP to 

about 0.05 g cm-2 yr-1 at present.  Sedimentation rates are comparable in DM-1 and 

MWT-6 between ~2,500-1,500 cal BP.   In contrast, rates of sedimentation during the 
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late-Holocene in MWT-2 and MWT-8 are two to four times greater than those of DM-1 

and MWT-6, averaging around 0.2 g cm-2 yr-1. 

Low LOI values (Table 2; Fig 3) reveal that little organic matter accumulated on 

the late-Holocene upper deltaic floodplain.  LOI values also indicate that upper core 

sections have greater organic content compared to lower sections, with a sharp boundary 

between these zones indicating changing supply rates and going against organic losses.  

The relative contribution that organic matter has made to overall sedimentation has been 

relatively low on the floodplain as evidenced at all the core sites where values are 

typically <0.015 g cm-2 yr-1 (Fig. 4).  The exceptions are in the bottom of MWT-8 and the 

top of DM-1.  In MWT-8, sediment deposited before 3,500 cal BP consists of 0.015-0.03 

g cm-2 yr-1 organic matter.  The tidal freshwater wetland deposits in DM1-4 record 

markedly more organic matter accumulation, ranging between 0.03-0.04 g cm-2 yr-1.  The 

organic matter contribution to the agricultural horizon is intermediate between 

floodplains and tidal freshwater wetlands, averaging 0.01 g cm-2 yr-1 but ranging between 

about 0.005-0.02 g cm-2 yr-1. 

 

 MWT-2, -6, and -8 Stratigraphy and Core Characteristics 

Clays containing organics were deposited from 427-220 cm in MWT-2, 

representing the 4,000-1,900 cal BP interval.  A thin sand layer is observed at 307-299 

cm depth and was likely deposited at about 2,600 cal BP.  Interbedded sand and silt 

deposited between 1,800-700 cal BP are noted in the core from 220-96 cm depth.  Clays 

with high organic content occur in the top of the core from 96-0 cm.  In contrast, the last 

4,000 years of depositional history is more homogenous in MWT-6 where mottled clays 
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are noted to occur until about 300 years ago, after which they are overlain by mixed 

organic topsoil between 50-0 cm depth.  Increased variability recurs in MWT-8.  Peat 

deposited from 5,400-4,100 yields to clay containing organics and visible wood 

fragments from 4,100-2,000 cal BP at 480-231 cm depth.  Mottled clay from 231-65 cm 

depth occurs between 2,000-500 cal BP whereas clay with interbedded pebbles and 

gravel is noted from 65-20 cm depth.  Organic topsoil characterizes the core from 20-0 

cm.  

Bulk density and Al do not change markedly across the agricultural boundary on 

MWT from deeper undisturbed deposits to upper highly impacted sediment (Table 2).  

However, many other proxy indicators do indeed exhibit a change across the boundary.  

Magnetic susceptibility decreases slightly across the agricultural boundary in MWT-2 

and increases slightly in MWT-6.  In MWT-8, the thin gravel deposit in the upper part of 

the core results in a noticeable increase in up-core susceptibility.  In terms of grain-size   

(Fig. 5), MWT-2 is characterized by 21% sand, 53% silt, and 24% clay between 4,000-

1,900 cal BP.  Sand increases to 42% from 1,900-700 cal BP, whereas silt and clay 

decrease to 38% and 20% respectively.  Sand is absent at the top of the core whereas silt 

and clay increase to 66% and 31% respectively.  MWT-6 consists of roughly 6% sand, 

60% silt, and 34% clay throughout the late-Holocene.  In contrast, MWT-8 shows some 

variability in grain-size with the interval from 4,000-2,000 cal BP containing 4% sand, 

73% silt, and 23% clay.  Between 2,000-1,000 cal BP, sand increases to 18% whereas silt 

and clay decrease slightly to 64% and 18% respectively.  The last 1,000 years are 

characterized by 5% sand, 49% silt, and 45% clay.  Less sand and more clay is generally 

noted in the agricultural horizon compared to pre-agricultural floodplain layers (Fig. 6).   
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Changes in total pollen flux and flux for individual taxa characterize the 

agricultural boundary on MWT (Fig. 7).  Pollen flux was not determined for MWT-2 

because pollen was rare throughout that core.  However, pollen extracted from MWT-6 

and MWT-8 show several trends.  In general, pollen flux was greater in pre-agricultural 

sediment compared to agricultural horizon.  Arboreal, riparian, and wetland taxa such as 

Pinus, Quercus, Salix, Cyperaceae, and Typha all show a reduction in flux across the 

agricultural boundary, whereas agricultural and disturbance indicators such as Zea and 

Chenopodiaceae show an increase.  Composites surprisingly decrease across the 

agricultural boundary. 

The analysis of pollutant concentrations in MWT shows elevated levels in the 

topsoil of all cores relative to the background levels for Hg, Pb, and P (Fig. 8). MWT-2 

has 293 ppb Hg (12.8x), 15.2 ppm Pb (2.3x), and 956 ppm P (2.7x), with anthropogenic 

enrichments given in parentheses.  MWT-6 has 253 ppb Hg (11.8), 13.2 ppm Pb (1.5x), 

and 1043 ppm P (4.1x).  MWT-8 has 192 ppb Hg (5.7x), 14.9 ppm Pb (1.5x), and 799 pm 

P (1.9x).  As was not present in basal layers of MWT-2 or MWT-6.  In the latter case, As 

concentration drops from 11.0 to 2.17 ppm from present day to 1,300 cal BP (5 to 45 cm 

depth), showing an anthropogenic effect.  For MWT-8, As is present throughout, but the 

surficial sediment is 3.6 times more enriched (19.2 ppm) than the basal layers.  The depth 

of pollutant penetration in the cores was found to be 30 cm for MWT-2, 50 cm for MWT-

6, and 100 cm for MWT-8. 
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DM-1 Stratigraphy and Core Characteristics 

DM-1 is 205 cm long (Fig. 3).  Olive-red mottled clay is observed between 3,650-

2,500 cal BP at 205-178 cm depth.  A gradual color change is noted in DM-1 with olive 

clay occurring between 2,500-1,200 cal BP at 178-122 cm.  Mottled dark grey clay is 

present between 1,200-350 cal BP.  Fibrous plant fragments that were laid down between 

350-250 cal BP are noted between 52-40 cm depth.  The fibrous plant unit is replaced by 

dark grey-black clay between 250-100 cal BP.   Peat that was deposited during the last 

100 years is observed in the in the top of the core from 22-0 cm depth.   

The stratigraphically constrained cluster diagram combined with visual inspection 

of the core yields four distinct zones for DM-1 (Table 2; Fig. 3; DM1-1 to DM1-4).  Zone 

DM1-4 is further divided into 3 subzones (DM1-4a to DM1-4c).  Zone DM1-1 occurs 

from 204.5-185 cm depth, spanning the interval from 3,650-2,750 cal BP.  Pollen is rare 

in this zone at the 1 cm-3 resolution and magnetic susceptibility is highest in the core.  

DM1-2 occurs from 185-101 cm depth, covering the interval from 2,750-880 cal BP.  

Pollen remains rare in this zone.  Magnetic susceptibility decreases from DM1-1 to an 

average of 23 x10-5 SI units.  One other notable feature in this zone is the decrease in 

percentage silt and clay and increase in sand from 159-151 cm depth.  Pollen is detected 

in upper half of zone DM1-3, which persists from 880-280 cal BP (101-45 cm depth), for 

the first time in the core.  The most abundant taxa in this zone are Quercus and 

composites.  A noticeable increase in pollen flux is evident in the DM1-4, which 

comprises the top of the core from 45-0 cm depth spanning 280-0 cal BP.  Other 

noteworthy features of DM1-4 include an increase in organic content as evidenced by the 

highest LOI values for the core.  The pollen stratigraphy in DM1-4 varies considerably 



 20

between the subzones.  DM1-4a has lower pollen flux compared to DM1-4b and DM1-

4c, though many of the pollen types observed in DM1-4a are also observed in the other 

subzones.  DM1-4b and DM1-4c have distinguishable pollen assemblages.  DM1-4b is 

characterized by Pinus, low levels of Quercus, composites, Rubiaceae, and Typha 

whereas DM1-4c contains Pinus, more Quercus, Salix, Alnus, Poaceae, Typha, and 

Cyperaceae. 

Bulk density gradually decreases up-core in DM-1 from 1.8 g cm-3 in the base of 

the core to 0.9 g cm-3 at the top, whereas MWT shows little up-core variability.   A 

similar pattern is noted in LOI where greater values are observed in the upper wetlands 

(~24 %) compared to deeper more inorganic deposits (~5 %).  Magnetic susceptibility is 

markedly higher in the basal section of the DM-1 core, averaging 67 x10-5 SI units in 

zone DM1-1 compared to the upper wetlands (DM1-4c) that have a magnetic 

susceptibility of about 8 x10-5 SI units.  The fibrous plant remains in zone DM1-4a do not 

have a magnetic signature.  These trends are generally consistent with the MWT cores 

that show higher LOI and susceptibility in the upper disturbed layer compared to basal 

sediment.  DM-1 has a highly consistent grain-size profile throughout the late-Holocene 

that is comparable to MWT-6, consisting of approximately 2% sand, 65% silt and 33% 

clay.  The wetlands in DM1-4 have slightly more silt and less clay compared to the 

agricultural sediment on MWT and less sand compared to the undisturbed floodplains 

that characterized the region in the past (Fig. 6). 

Al generally increases up-core from a basal low of 1.7 % in DM1-1 to a high of 

6.0 % near the top of the core in DM1-4c.  Hg, Pb, As, and P are greater in the upper 

wetlands compared to the deeper floodplain sediment.  The concentrations of these 
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elements in the DM1-4c wetland are all equal or greater than those in the top-most 

agricultural sediment on MWT, revealing that DM-1 has experienced the most severe 

pollutant enrichment of all cores (Fig. 8).  The surficial concentration and enrichment 

ratio for Hg were 257 ppb and 24.5 respectively.  For Pb, they were 23.3 ppm and 3.7.  

For P they were 1604 ppm and 4.2.  Enrichment ratios drop to background levels by 140 

years ago (27 cm depth).  The surficial concentration of As was 12.9, with a spike to 22.7 

occurring 55 years ago and none present before 90 years ago. 

 

DISCUSSION 

 The 12 cores collected from MWT and DM provide critical insight into the 

spatio-temporal evolution of an upper deltaic plain in the SSJD.  The following 

discussion will first examine the general nature of MWT prior to human disturbance and 

this will be compared to similarly old sediment from DM, thus establishing a late-

Holocene spatial reconstruction of the study site.  Next, the upper disturbed layer on 

MWT is examined and contrasted to the underlying undisturbed sediment.  Finally, tidal 

wetland development in the upper part of DM is examined. 

 

Late-Holocene Floodplains  

The age-depth model developed by Brown and Pasternack (submitted) reveals 

that the past surface topography of the upper deltaic plain was well above the influence of 

sea level for most of the last 10,000 years.  This suggests that relative sea level rise and 

local sedimentation were independent processes through that period, with the former 

occurring significantly faster than the latter. Since relative sea level rise has been fairly 
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constant in the last 4,000 years, the recent matching of the curves must be due to a 

significant increase in sediment supply.  This change in supply is most likely due to 

increased erosion and disturbance caused by land use but it could possibly be due to 

changing deltaic local geomorphic conditions, renewal of accommodation space, and 

associated reduction in sediment bypassing. 

 The differences in the age-depth model reveal that the past surface topography of 

the upper deltaic floodplain was spatially variable, likely because different geomorphic 

features such as levees and channels were affected by processes such as flooding and 

lateral channel migration that characterized the site (Brown and Pasternack, submitted).  

Late-Holocene grain-size profiles from MWT-2, -6, and -8 (Figs. 5 and 6) coupled with 

the visual descriptions of the upper 200 cm from the remaining MWT cores (Fig. 1) 

reveal that silt and clay, and to a lesser extent sand, were widely dispersed throughout the 

late-Holocene, with a corresponding very low amount of organic material present.  

Though there are subtle variations between the cores, we interpret these deposits as past 

floodplain because tidal wetlands are highly enriched in organic content (Pasternack and 

Brush, 2001).  The greatest amount of sand accumulated at the southern end of the tract at 

MWT-2, whereas the most amount of silt was deposited in the northwest corner of the 

tract around MWT-8 (Table 2; Figs. 1, 5, and 6).  The highest clay content is found in the 

middle of the tract at MWT-6.  Changes in average magnetic susceptibility in the 

floodplain sediment (Table 2) also record the spatial distribution of different sized 

sediment since magnetic susceptibility is shown to increase with increasing grain-size on 

MWT (Brown and Pasternack, submitted). 
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In general, sand is not very abundant in the DM-1 core (Table 2; Figs. 3 and 6).  

Instead, silt dominates much like in nearby MWT-8, suggesting that floodplain habitat 

constituted the DM site in the recent past as well.  This result is somewhat surprising 

since it demonstrates that the tidal wetlands in DM must be relatively young habitat.  The 

main difference between DM-1 and MWT-8 is that clay is the next most abundant grain-

size after silt in DM-1, whereas sand and clay are similarly abundant at MWT-8.  In 

addition, high basal magnetic susceptibility values in DM1-1 are replaced by values 

consistent with those of MWT-8 in zone DM1-2 (Table 2; Fig. 3).  The higher content of 

sand at MWT-2 and silt at MWT-8 and DM1-1suggests that these sites were generally 

more proximal to active channels compared to MWT-6.  Further, changes in grain-size 

throughout the late-Holocene, such as the increase in sand content in MWT-2 between 

1,700-700 cal BP could reflect increased proximity to a channel or the local formation of 

a levee or sand splay complex (Asselman and Middelkoop, 1995; Steiger et al., 2001; 

Pasternack and Brush, 2002).  Together, these observations reveal that the tract was 

geomorphically active in the late-Holocene. 

Little organic accumulation occurred on the floodplain as evidenced by low LOI 

values (Table 2; Fig. 3).  The amount of organics that were accumulating on the 

floodplain are very consistent with a sedimentary endmember mixing line previously 

developed by Brown and Pasternack (submitted), suggesting that most of the organic 

matter on the floodplain is reflective of particulate organic matter derived from landscape 

wash load.  MWT-6 deviates the most from the mixing line and has the highest LOI 

values noted on the past floodplain, implying that more organic matter may have 

accumulated at this site.  However, when adjusted for sedimentation, all sites generally 
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show comparable amounts of organic accumulation (Fig. 4).  The highest amount of 

organic matter occurs in the bottom of MWT-8, which is not surprising since this site 

previously supported wetlands in the late mid-Holocene (Fig. 6; Brown and Pasternack, 

submitted).  Late-Holocene sedimentation rates are lower at MWT-6 and DM-1 

compared to MWT-2 and MWT-8 (Fig. 4) simply because these sites are at higher 

elevations (Fig. 2) and experienced slower accretion. 

Pollen is rare in the late-Holocene floodplain sediment, likely because of the 

grains were degraded through oxidation and mechanical abrasion.   In fact, little to no 

pollen was observed in MWT-2 and the bottom of DM-1 at the 1 cm-3 sampling 

resolution.  Fortunately, pollen was observed in MWT-6, MWT-8, and in zone DM1-3 

(Figs. 3 and 7) and these grains provide additional information about the late-Holocene 

variability in the upper delta.  The Pinus pollen largely observed in MWT-8, is likely 

derived from drier upland sites that supported pine woodlands.  Quercus pollen coupled 

with lower levels of Chenopodiaceae further imply the presence of nearby dry slope 

habitat.  The presence of Quercus and Salix pollen suggest that well developed riparian 

forests bounded nearby rivers (Atwater, 1980).  The high flux of Cyperaceae and Typha 

pollen indicates that bulrush and cattail dominated freshwater wetlands abounded the 

upper delta.  The presence of composites implies that open areas such as floodplains, 

were extensive, though some of the composites may have persisted in wetlands too. 

Together, these observations suggest that floodplains were widespread over much 

of the upper delta in the late-Holocene.  These floodplains exhibited topographic relief 

and variations in grain-size and rates of sediment accumulation.  Little organic matter 

accumulated permanently on the floodplain, and what did was likely delivered as wash 
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load during flood events.  In addition to floodplains, pollen observations suggest that 

riparian forests and wetlands were also common forms of habitat. 

 

Upper Agriculturally Disturbed Horizon 

 The top-most sediment on MWT related to agriculture is not only widespread on 

MWT but also markedly different from the lower floodplain layers.  The amount of 

organic matter in the agriculturally mixed layer is noticeably higher compared to the 

subsurface floodplain sediment (Table 2; Fig. 4).  At all sites on the tract, silt constitutes 

roughly two-thirds of the sedimentary matrix with clay comprising the remainder (Table 

2; Figs. 5 and 6).  Sand is virtually absent in the agricultural profile.  The pollen records 

also record a noticeable change.  Overall pollen flux is greatly reduced (Fig. 7), 

suggesting a reduction in landscape productivity.  This reduction in flux, however, could 

also result from increased oxidation and mechanical breakdown of pollen due to invasive 

practices such as tillage.  However, marked declines in Pinus, Quercus, Salix, 

Compositae, Cyperaceae, and Typha imply some loss of habitat.  Noticeable increases in 

Zea pollen testify to the conversion of once pristine floodplains to agricultural fields.  A 

dramatic increase in Chenopodiaceae exemplifies the degree of human induced 

disturbance and clearly illustrates that the vegetation communities common in the upper 

delta today are profoundly different from those that persisted in the region for millennia. 

Perhaps most disturbingly is the dramatic increase in chemical pollutants noted in 

the agriculturally mixed horizon.  Hg, Pb, As, and P all show elevated concentrations 

compared to late-Holocene background levels.  This might be a problem for wetland 

restoration, as restoration will impose reducing conditions that promote toxification.  The 
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sources of Hg to the study area are from Hg mining in the Coastal Range located 

northwest of the delta.  Hg was transported directly through streams such as Cache Creek 

and though its translocation and use in gold mining in the Sierra Nevada.  The sources for 

the elevated concentrations of Pb include industrial air pollution and car emissions, 

whereas the As comes from industrial combustion and high temperature processes as well 

as insecticides, weed killers, fungicides, and wood preservatives.  Phosphorus is derived 

primarily from agricultural and lawn fertilizers. 

 

Tidal Freshwater Wetlands  

 Unlike the MWT that was leveed, drained, and converted into agricultural pasture, 

DM is in somewhat more intact, though not necessarily healthier.  DM gradually came 

under tidal influence as sea level transgressed throughout the late-Holocene, likely 

around 1,500 years ago (Fig. 2).  By about 500 years ago DM was keeping pace with the 

changing sea level.  Typha wetlands and meadows thrived in this environment starting 

about 280 years ago and continuing until present-day (Fig. 3).  Cyperaceae, or more 

specifically Scirpus, wetlands started to expand at about the same time but developed 

more extensively only recently, about 120 years ago as indicated by pollen and the 

deposition of peat.  Sediment not only changed from inorganic silts to silts and clay with 

high organic content (Table 2; Figs. 3, 5, and 6), but it also began to accumulate more 

rapidly (Fig. 4).  Magnetic susceptibility subsequently decreased.  These observations 

reveal that the wetlands around DM are very recent landscape features.  Pollen from the 

DM core also reveals that some Pinus woodlands and riparian forests containing 

Quercus, Salix, and Alnus also survived nearby.  The increase in pollutants is even more 
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noticeable in DM compared to MWT, revealing that these wetlands, often considered 

relatively pristine by the public, are in fact highly polluted.  As such, they may make 

excellent restoration models if they are studied in detail to understand how such wetlands 

are functioning now in the face of such strong physical disturbance and chemical 

pollution. 

 
CONCLUSIONS 

A comparative analysis was performed between the history of MWT farmland 

and the adjacent protected DM tidal freshwater wetland covering the last 4,000 years to 

assess spatio-temporal variability in landforms and habitat conditions.  Amazingly, 

topsoil and wetland peat is present only as a thin veneer at both sites respectively.  In 

fact, AMS radiocarbon dating of the base of the peat shows that the tidal wetland at DM 

is less than 100 years old.  The elevational history of DM also shows that it did not come 

under tidal influence until the most recent anthropogenic period, suggesting that the 

wetland itself was a result of human impact, most likely gold mining sedimentation.  This 

finding is very similar to results reported for Atlantic tidal freshwater wetlands of 

Chesapeake Bay, Delaware, and New Jersey.  A mosaic of habitats including open 

floodplains, riparian forests, Scirpus wetlands, and upland woodlands prevailed 

throughout much of the late-Holocene, though in the modern era these are more restricted 

and less productive.  Whereas MWT shows the potential for becoming a polluted marsh 

risking wetland biota, DM is in fact already a highly polluted biohazard.  Hg, Pb, As, and 

P all show extremely high concentrations relative to pre-anthropogenic background 

levels.  The restoration significance of these findings is that there are no long-term, stable 

tidal freshwater wetlands on the upper deltaic plain of the SSJD.  Such wetlands are 
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geomorphically ephemeral, but part of an overall habitat patchwork.  Also, it is 

imperative that research be performed right away to determine the significance of the 

pollution in Delta Meadows so this may serve as a model for what to expect in restoring 

Delta tracts. 
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Table 1.  AMS radiocarbon dates for cores MWT-2, MWT-6, MWT-8, and DM-1 with 1 
standard deviation statistics where ybp is radiocarbon years before present and cal BP is 
calendar years before present.  The radiocarbon dates were converted into median 
calendar ages using a calibration program developed by Stuiver and Reimer (1993).   
 

Sample 
Number 

Site Material Depth 
(cm) 

Conventional 
14C date (ybp) 

Median Calendar 
Age (cal BP) 

Beta-160023 MWT-2 Organic 
sediment 

1060-1070 12420 ± 90 14670 

Beta-160024 MWT-2 Organic 
sediment 

1070-1080 23550 ± 210 N/A 

Beta-151650 MWT-2 Organic 
sediment 

1260-1270 40100 ± 1010 N/A 

Beta-160025 MWT-6 Organic 
sediment 

370-380 5730 ± 50 6530 

Beta-160026 MWT-6 Organic 
sediment 

690-700 7700 ± 60 8480 

Beta-151651 MWT-6 Organic 
sediment 

1290-1300 8630 ± 40 9560 

Beta-160027 MWT-8 Organic 
sediment 

80-90 710 ± 40 665 

Beta-160028 MWT-8 Peat 540-550 4290 ± 50 4860 
Beta-151652 MWT-8 Wood in 

peat 
1040-1050 4970 ± 50 5700 

Beta-160029 MWT-8 Organic 
sediment 

1210-1220 15890 ± 100 18970 

Beta - 160030 DM-1 Peat 20-22 120.2 ± 0.4 95 
Beta - 160031 DM-1 Organic 

sediment 
202-204 3190 ± 40  3410 
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Table 2. Core characteristics for MWT-2, -6, and -8 across the agricultural boundary 
where BD is bulk density (g cm-3), LOI is loss-on-ignition, MS is magnetic susceptibility 
(x10-5 SI units), and n/a is not available because values were so low they were not 
reported during analysis.  All of the zones identified in DM-1 are presented since this site 
was not disturbed by agricultural activity.  All listed values are averages.   
 

Zone Depth 
(cm) 

Age 
(cal BP) 

BD LOI MS Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Al 
(%) 

Hg 
(ppb) 

Pb 
(ppm) 

As 
(ppm) 

P 
(ppm) 

MWT-2  
Agriculture 

Pre-Agriculture 

 
0-30 

30-430 

 
-50-200 

200-4000 

 
1.8 
2.0 

 
8.3 
3.2 

 
26 
57 

 
4 

25 

 
58 
50 

 
38 
25 

 

 
3.3 
2.3 

 
294 
23 

 
15 
6 

 
13 
n/a 

 
942 
311 

MWT-6  
Agriculture 

Pre-Agriculture 
 

 
0-50 

50-150 

 
-50-1700 

1700-4000 

 
1.9 
1.8 

 
8.4 
8.1 

 
26 
10 

 
4 
8 

 
61 
58 

 
35 
34 

 
2.9 
2.6 

 
222 
31 

 
12 
10 

 
7 

n/a 

 
887 
345 

MWT-8  
Agriculture 

Pre-Agriculture 
 

 
0-110 

110-460 

 
-50-900 

900-4000 

 
1.8 
1.7 

 
6.0 
5.2 

 
54 
25 

 
6 
8 

 
53 
69 

 
39 
23 

 
3.2 
2.6 

 
238 
27 

 
14 
9 

 
19 
6 

 
756 
488 

DM1-4c 0-21 -50-90 0.9 24.4 8 1 64 35 3.9 256 22 17 2423 
DM1-4b 21-37 90-220 1.0 12.7 4 1 59 40 4.1 74 14 n/a 356 
DM1-4a 37-45 220-280 1.0 23.0 0.5 0 65 35 4.6 67 16 n/a 367 
DM1-3 45-101 280-880 1.2 6.6 5 1 71 28 3.3 38 13 n/a 269 
DM1-2 101-185 880-2750 1.4 7.0 23 5 62 33 2.3 23 9 n/a 214 
DM1-1 185-204.5 2750-3650 1.8 4.7 67 0 69 31 1.9 17 7 n/a 339 
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Figure 1. Location map of the study site.  The McCormack-Williamson Tract (MWT) is 
located in the Sacramento-San Joaquin Delta, which is marked by a star in the California 
inset map.  MWT is bounded by the Cosumnes River to the east and Snodgrass Slough to 
the west.  Delta Meadows is located along the western banks of Snodgrass Slough at the 
site marked by the DM core.  The locations and simplified top 2 m lithologies are shown 
for all cores.   
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Figure 2. The left panel shows the late-Holocene non-linear calendar-year age-depth 
model for the MWT-2, -6, and -8 geoprobe cores, as well as the DM-1 vibracore.  The 
sea-level curve is from Atwater (1979).  The age-depth models were constructed by 
fitting a smoothing algorithm to the calendar dates obtained for the cores.  The graph on 
the right reveals the elevation differential between the cores and sea level.  The horizontal 
line represents the 70 cm higher high water mark.  Values >70 cm imply no tidal 
influences, whereas those <70 cm imply some tidal influence.   
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Figure 3. Stratigraphically constrained cluster diagram for DM-1 where LOI = loss on 
ignition and MS = magnetic susceptibility.  Pollen estimates are presented as flux (grains 
cm-2 yr-1).   
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Figure 4.  Sedimentation and organic accumulation rates of all cores during the last 4,000 
years. 
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Figure 5. Late-Holocene changes in percent sand, silt, and clay. 
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Figure 6.  Ternary diagram showing the grain-size distribution for the various 
environments identified in the cores. 
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Figure 7.  Changes in pollen assemblages across the agricultural boundary for MWT.  
The “pre” suffix reflects the pre-agricultural conditions whereas the “post” suffix 
represents the post-agricultural or mixed interval. 
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Figure 8. Down-core changes in pollutant geochemistry. 
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Abstract

Pairing of a CALFED grant (Ecosystem Restoration Program Co-op Agreement no.

114200J095) with a generous private grant from The Seaver Institute to The Nature Conservancy

and University of California at Davis enabled an expansion of the McCormack-Williamson Tract

(MWT) restoration planning project to combine state-of-the-art seismology with

paleoenvironmental reconstruction techniques to yield a cutting-edge environmental perspective on

the restoration potential for the site.  In the first phase, the seismographic technology was tested

using a rented system and promising results were found.  In particular, we imaged underground

river channels and sedimentary layers, but they turned out to be much too deep to be of relevance

for restoration.  In the second phase, the physical limits of near-surface data collection were

contested using highly customized equipment to image near-surface substrate, yielding excellent

raw data.  The amount of seismic data collected using very high sampling resolution appears to

exceed undisclosed built-in limits in the low-cost Winseis processing software used to convert

field derived raw seismic data into polished seismic imagery.  In consequence,  an alternate means

of analyzing the high-resolution data has yet to be identified, but efforts are still underway to find

an alternative approach.  Without having the data analyzed, it is not possible to evaluate the depth

of the survey or the resolution of sedimentary layers.  Consequently, while this project has yielded

some very interesting results that will inform wetlands restoration at the McCormack-Williamson

Tract, it has revealed a limitation of seismic technology for routine evaluations of potential

restoration sites: unreliability of low-cost software and complexity of methods required for

analysis and interpretation by skilled geologists. We were excited to have this opportunity to test

out this cutting-edge technology in a novel application.  However, we must conclude at this time
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that seismology is of much less value than sediment coring in revealing and understanding

subsurface structure.
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INTRODUCTION

Critical among the problems that face environmental restoration specialists are those related to

selecting the most promising sites for successful restoration coupled with choosing the most

appropriate techniques for site evaluation.  Restoration of riparian habitat is an expensive business

that can cost from $2,000 to $10,000 per acre, so it is vital for conservationists not to waste scarce

resource on non-viable sites.  Often, restoration planners try to select sites by visiting the site and

consulting aerial photographs.  This approach, while important, cannot guarantee success and cost

efficiency.  Knowing the nature of the subsurface is critically important since it can provide

detailed insight into past conditions, habitats, and processes at the site.  If too little is known of

subsurface conditions and structures, restoration ecologists may find themselves working on

unpromising sites with techniques poorly suited to the location.

Taking soil cores and digging trenches are two methods often used to learn about

subsurface conditions. But coring and trenching provide knowledge of only a few isolated points

or cross-sections.  Scientists must extrapolate what they learn from these limited investigations to

the rest of the site.  Time and expense limit the number of core samples that can be taken and the

number of trenches that can be dug, and using too many of either can damage the environment.

Moreover, trenches are often too shallow to reveal deeper structures. So relying only on these

methods can easily lead to errors. Important subsurface structures such as ancient riverbeds and

hardpan layers may go entirely undetected.

The Potential for Seismic Techonology

To detail subsurface conditions more extensively, exploration seismography has been

frequently been employed (Pullan et al. 1990).  The most promising new seismographic
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technology uses both refracted and reflected sound waves to provide detailed, three-dimensional

images of underground features.

Seismic surveys use sound waves to collect information about theshape and texture of

underground features.  A sound wave is propagated by striking a metal plate on the ground or

firing a downward shot from a specialized gun.  A series of geophones distributed across the field

detect slight vibrations associated with the generated signal as they bounce off different soil layers

and return to the surface.  The signal is relayed to a computerizedseismograph, which  measures,

displays, and interprets the returning echoes.  Three-dimensional images can be generated either

from a grid arrangement of geophones or from several transects using specialized software.

 There are two types of seismic surveys: refraction and reflection. Refraction surveys

interpret the refraction of sound waves as they encounter different materials.  Greater resolution is

provided with reflection surveys, which use the echo of sound waves that bounce back from the

underground material to the surface, but this method requires more data and is therefore more

time-consuming to conduct.  Seismic surveys, particularly reflection surveys, can extend several

hundred feet deep, but there is a tradeoff between depth and resolution of image.  We are interested

in shallow surveys (up to 50 feet deep) because the features important to ecosystem restoration are

closer to the surface.  For example, while tree roots can penetrate as much as 30 to 40 feet deep in

search of groundwater, younger plants need shallower groundwater to become established.

Seismic technology has not been previously employed  in ecosystem restoration, but it could be a

very valuable innovation in this field.  The images it produces allow scientists to reconstruct the

geological history of an area and map present underground features, such as ancient stream beds,

slough channels, or layers of impermeable hardpan supporting perched watertables.  With this

information, restoration specialists could target sites whose combined soil, subsurface, and water
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conditions offer the best chances of successful, cost-efficient restoration.  In addition, they could

refinethe restoration goals and techniques best suited to the site.  In the MWT study it was

hypothesized that a shallow seismic reflection survey could greatly enhance the understanding of

the subsurface structure of the restoration site beyond what could be obtained from a coring study

alone.

STUDY AREA

Tidal freshwater wetlands are a critical component of the coastal ecosystem in the San

Francisco Bay (SFB) and Sacramento - San Joaquin Delta (SSJD) on the west coast of the United

States.  These wetlands exist primarily in the upper tributaries of estuaries, where salinity is less

than 0.5 ‰ and water levels fluctuate in response to tidal exchange, local wind forcing, and winter

river floods.  They contain a wide array of nutrient rich aquatic and riparian environments, have

the highest plant diversity of any coastal wetland type, and are critical buffer zones that protect

estuaries against sediment, nutrients, and toxics from deleterious human activities.  Although only

a small area of the SFB-SSJD region contains tidal freshwater wetlands today, early explorers

reported vast expanses.  In the SSJD alone, land-use and pollution have destroyed 700,000 acres of

overflow and seasonally inundated land, largely tidal freshwater marshes. Where tidal freshwater

marshes were converted to farmland, agriculture faces significant and increasing exposure to

floods and earthquakes.

The CALFED Bay-Delta Program, an element of a consortium of state and federal

agencies, calls for ecosystem restoration in part to protect levee infrastructure and agricultural

land.  The Nature Conservancy, a private conservation group, has purchased the ~1,600 acre

McCormack-Williamson Tract (MWT) in the northern Delta to restore it to tidal freshwater
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wetland.  Knowing where on the tract restoration efforts should be focused would greatly reduce

costs and significantly increase the likelihood of success. To provide The Nature Conservancy

with the critical baseline data necessary for successful restoration, scientists from the University of

California, Davis have joined ecologists and managers from The Nature Conservancy on

investigative field research projects designed to reveal the chemical, physical, and biological

dynamics of the MWT.

MWT (Fig. 1) is uniquely located at the head of the delta downstream from the confluence

of the Cosumnes and Mokelumne rivers and adjacent to the Sacramento River.  The Cosumnes

River is the only major river flowing out of the Sierra Nevada whose mainstem is undammed.

MWT is ~650 ha in area and is bordered by the Mokelumne River to the east, Snodgrass Slough to

the west, and artificial dredge channels to the north and northeast.  Historic maps show that MWT

supported freshwater wetland in the early 20th century (United States Geological Survey, 1911).

The wetland was likely tidal, as the adjacent channels are presently tidal for several miles

upstream.  Subsequently, the tract was leveed, drained, and converted into agricultural land.  After

drainage, MWT and other delta islands experienced subsidence as surface organic sediment was

oxidised and decomposed (Rojstaczer et al., 1991).

PROJECT ACHIEVEMENTS

Geophysical Work- Phase 1

During the first phase of geophysical work, a StrataView seismograph system was rented to

learn the technique, collect trial seismic lines on MWT, and to process the data todetermine its

relevance, if any.  Geometrics, the top company selling seismographic systems, provided training

and assistance on the methods for collecting seismic data.  Subsequently, 5 seismic lines were
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surveyed using the rental system and a sledgehammer seismic source (Fig. 1).  Walkaway tests to

optimize the return seismic signal yielded a typical offset of 40 ft between hammer location and

the first geophone.  Geophones were distributed along the selected transects in 3-5 ft increments.

Generation of the seismic sound signal involved 6 hammer swings.  Afer the signal was collected

at one location the entire line was extended the length of the geophone increment and resampled,

thus propagating the seismic sampling across the study site. .  The numbers of spots per survey line

ranged from 140-1100, yielding thousands of exhausting hammer swings per seismic line.

After the data was collected, a computer program, Winseis, was purchased and used to

process some of the seismic lines to evaluate the performance of the approach with respect to

restoration goals.  Winseis was selected because it is the software that was written and used by

leading government experts on seismic reflection.   For comparison, commercial data processing

software used in the oil exploration industry costs between $10,000-$100,000, which greatly

exceeded our budget.  Also, private consulting firms could process our seismic lines at a cost of

~$5 per shot, which corresponds to $1000-5000 per survey line, which would quickly exceed the

cost of software and labor.  The government experts, employees of the Kansas Geological Survey,

provided some training on the use of Winseis and helped us process our trial survey data.  Spectral

analysis of the resulting seismic signal showed low energy in the high frequencies (Fig. 2), not

conducive to near-surface profiling.  The resulting seismic images showed near-horizonal

subsurface strata and features to a depth of ~100 m (Fig. 4).  The gently dipping u-shaped features

are interpreted as wide, ancient channels deposits.  These channels likely crosscut the MWT in the

past.  The presence of these paleochannels is consistent with the view that the MWT has been

flooded frequently and cross-cut  by channels many times in the past.  These data suggested that
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any future restoration activity on the MWT should consider restoring channels and associated

fluvial processes to the site.

Geophysical Work- Phase 2

Though the phase 1 research revealed some insight about past fluvial processes on the

MWT, such as channel incision and migration, the images were too deep to be directly useful for

comparing with the sediment cores and for guiding the on-going restoration effort.  The primary

reasons for the deep imaging with too little resolution are directly related to the seismic source and

the geophones.  Working in consultation with both the Kansas Geological Survey and Geometrics,

a significantly improved seismographic system was designed and built to aquire near-surface high-

resolution data.  Key features of this system included higher frequency (40 Hz) geophones, a

custom-built seismic-rifle, digital seismograph technology, and a 72-channel seismograph.  Several

technological and logistic hurdles had to be addressed before this cutting-edge approach could

work, as several elements of the system were completely new technology.  Eventually all data

collection hurdles were overcome.

During the spring of 2002 the new seismographic system was used to develop a surveying

methodology for collecting seismic lines.  Because live ammunition is used to generate the seismic

signal (Fig. 4), the effort was also coordinated with University of California police.  In addition,

every member of the field crew participated in a fire-arms safety coarse and became NRA certified

for small-arms fire.  To increase the resolution and decrease the depth of the survey, we had to

reduce the geophone spacing from 4 ft to 8 inches, with rifle-to-geophone offset of 18 ft.

Thankfully, the increase in the number of shot locations was exactly countered by the reduced

number of repeat shots necessary at each location- from 6 for the hammer down to 1 for the rifle,



9

as the rifle generated substantially greater energy per shot.  However, the rifle barrel had to be

placed into the ground for every shot, which required augering a 6-inch hole at every shot location

using a gas-powered industrial auger.  This proved difficult since the shot holes were so closely

spaced, augering one hole would often cause the adjacent hole to collapse.  Firing a single rifle

shot is quicker, less tiring, and actually safer than making several swings of the hammer.  Thus,

overall the surveying time was slightly streamlined and more effective even though many more

shot locations were sampled.  The principle downsides were the cost of bullets and balloons (to

protect the gun barrel from backsplash after firing into the ground), which amounted to $1 per

shot.  However, in the future this can easily be budgeted into the cost of using the system.  To

provide a consistent approach to data collection for future use by any TNC or UCD staff, we wrote

a manual that explains the surveying process and includes many photos illustrating the procedure

(Appendix A).

During the summer of 2002 seismic data was collected from MWT.  We had originally

proposed in our previous annual report to shoot 3 lines to delineate a paleo-wetland that was

uncovered in the sediment cores (Fig. 1), but the estimated cost of performing such a survey based

on a $1 per shot estimate (plus labor cost) was prohibitive given the remaining funds.  Instead, we

decided to use the system to shoot a single line over a section of one of the survey lines from phase

1 for three reasons.  First, we wanted to have a direct comparison between the two systems so we

could evaluate the improvement.  Second, aerial photos suggested the presence of a near-surface

paleo-channel at this location.  We were interested to see if the new system could detect and

profile this feature.  Third, we had collected a core along this transect and could use the known

lithology to help interpret the seismic line.  For this new line we shot 1560 points, which amounted

to more shots compared to any sledge-hammer line, confirming the efficiency of the new system.
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The raw data had the best signal response we have seen, and a new software tool that came with

the system showed that the rifle was in fact generating significant high frequency signals as hoped.

As soon as the field surveying was finished, we started trying to process the data, but we

ran into significant hurdles using WinSeis, and these problems have not been resolved.  In

collecting the field data we chose to record all the highest frequency features of the data, as needed

for our restoration objectives, but this yielded much more data than in phase 1 and more than is

commonly analyzed.  Each shot is stored on the computer as an individual file, with each file being

~ 1-3 MB in size.  With 1560 shots, the combined file size is close to 2 GB.  Apparently, Winseis

has many built-in problems analyzing such large files, and it seems that there is a 2 GB limit for

some commands.  We have tried to obtain help from KGS to resolve our problems, but despite our

previous payment for their help last year, they are not willing to help guide us through this new

data analysis. Even with the help of a geophysics professor at UC Davis, Dr. Jim McClain, we

could not get Winseis to work properly.  We have even offered to fly to Kansas at our own

expense to obtain further help in data processing from the geological survey, but they surprisingly

refused the offer stating that they only provide assistance with software defects and installation

problems.

CONCLUSIONS

This project involved side-by-side collection and processing of sediment core data and

seismic reflection data.  The strength of the sediment coring approach is that you actually have the

material to observe and analyze using many different techniques.  The results are real and provide

detailed insight into the history and evolution of the study site.  As paleoenvironmental

researchers, we use the sediment cores to travel back through time to observe the processes and
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diversity that characterized MWT in the past.  However, the weakness of this approach is that it is

costly and was too time consuming to analyze all 12 cores that were collected in full multi-proxy

detail. Instead, we elected to thoroughly study three long cores distributed longitudinally along

MWT and the vibracore from Delta Meadows using the large range of scientific analyses possible

at UC Davis.   The remaining MWT cores were studied using a subset of analyses.  The outcome

of the coring investigation is   a huge wealth of information on the history and geomorphic

dynamics of MWT. These findings are in various stages of peer-reviewed publication at this time.

By contrast, seismic surveying was ultimately found to provide a characterization of the

spatial extent of subsurface conditions.  Unfortunately, the analysis of that characterization hinged

on an inherently complex software package that consisted of multiple stand alone modules and no

instruction manuals.  To successfully process any data with this software would require written

software manuals for reference, software training sessions, and a cooperative software support

team to help with trouble-shooting.  Kansas Geological Survey scientists have reported using a

lower-technology surveying system compared to ours, and then using Winseis to analyze their data

to yield very shallow images of subsurface conditions.  We cannot confirm their reported findings,

because Winseis has too many software bugs and is too convoluted for use by any persons outside

of the original programmers and their immediate associates.

Our original plan was to test the seismic method at MWT, then apply this to other TNC

restoration sites, but the problem of data analysis has rendered the system useless until this

problem can be resolved.  The final effort to work with Winseis ended in March.  Three

alternatives are being pursued.  First, colleagues at Stanford University (with the collaboration of

UC Davis) have submitted a proposal to the National Science Foundation for over $1 million for

equipment and facilities for “near-surface characterization” of the earth’s surface.  The project
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funded by the Seaver Institute was several years ahead of this new Stanford initiative, and thus

puts us in a terrific position to benefit from this new possibility.  Second, we have contacted a

colleague in the oil industry because commercial seismic software packages are industrial-strength

utilities designed for the express purpose of production-level seismic processing.  We are asking if

she can provide technical assistance using their state-of-the art software for free or at a

substantially reduced cost.  Finally, we have recently learned of a freeware seismic processing

program called CWP/SU Seismic Un*x that may be better than Winseis, but that is not yet known.

The grand conclusion for the seismic surveying approach is that the field data collection is

affordable and practical for even non-technical staff to perform, but that extension of the technique

for use throughout The Nature Conservency is limited by the current lack of means for processing

the data.
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APPENDIX A: Multiple Geode Operating System (MGOS) Manual
By

Kendrick Brown

1.0 Introduction

The Multiple Geode Operating System (MGOS) is a relatively simple software package designed
for refraction and reflection geophysical field surveys.  This manual will document the step-by-
step deployment of a 72-channel seismograph and the subsequent collection of shallow reflection
seismic data.

This manual is meant to complement the original manual, GeodeTM and StrataVisorTM NZ
Operations Manual, which accompanied the MGOS package.  The original manual should be read
before employment of the system in the field. Chapter 1 in the original manual is a good
introduction to seismic research and provides an overview of the system.  Chapter 2 emphasizes
refraction studies whereas Chapter 3 emphasizes reflection studies.  The original manual
adequately introduces the reader to the MGOS system but does not detail the actual field
deployment of the seismograph and software.  Section 2.0 of this manual lists the contact
information of persons who participated in the original development and deployment of our
MGOS system and are useful sources of information for any future seismic study.  Section 3.0
comprehensively lists the equipment that is necessary for the collection of seismic data with our
system.  Section 4.0 outlines the step-by-step setup procedure of the seismograph and associated
field equipment as determined through a 4-week research operation in May, 2002.  Section 5.0
details the software setup. Section 6.0 expands on Sections 4.0 and 5.0 by describing the actual
field and software operations of a reflection survey.  Section 7.0 concludes the field element of
seismic signal collection.

2.0 Contact Information

As a precursor to any field research, it is important to have contact phone numbers in case of field
emergencies and these should be determined at the start of any new investigation.  Listed below
are the phone numbers, names, and affiliations of persons involved in the original deployment of
the seismograph.  These numbers and personnel may change through time and should be checked
and updated before any field excursions.

Contact: Dr. Greg Pasternack
Affiliation: University of California, Davis faculty member. Primary purchaser of seismic
equipment and general contact person/coordinator for seismic equipment.
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Phone: 530-754-9243

Contact: Dr. Ramona Swenson
Affiliation: Ecologist at The Nature Conservancy (TNC).  The seismograph, computer, and
software are actually owned by TNC. Dr. Swenson was involved with the purchase of the
equipment and should always be kept informed about its usage
Phone: 916-684-4012

Contact: Jody Williams
Affiliation: TNC employee. Purchased the equipment and has access to purchase records and
receipts.

Contact: Craig Lippus
Affiliation: Employee at Geometrics, the San Jose based company that sold the 72-channel
seismograph and accompanying software to UCD and TNC. Can provide field assistance if
requested.
Phone: 408-428-4244

Contact: Deb Underwood
Affiliation: Employee at Geometrics, the San Jose based company that sold the 72-channel
seismograph and accompanying software to UCD and TNC.
Phone: 408-428-4245

Contact: Ron Freshour
Affiliation: Freshour Manufacturing Inc. located in Texas.  Manufactured the seismic rifle and can
be consulted about its design and general usage and maintenance.
Phone: 409-945-7726

Contact: The Shooting Gallery, Inc.
Affiliation: Located at 27 Commerce Place, Vacaville, CA, 95687. The Shooting Gallery is the
firearm store that registered the rifle. Also a good source for ammunition and rifle cleaning
products (ammunition is about $2/box of 20 rounds cheaper if purchased atWall-Mart)
Phone: 707-449-4867

Contact: Michael Oreschak
Affiliation: University of California Police Department.  Mr. Oreschak is the officer who provided
information about the storage, transport, and usage of the seismic rifle and ammunition.
Phone: 530-752-1727

Contact: Jianghai Xia
Affiliation: Kansas Geological Survey. Can help with post-collection data processing.
Phone: 785-864-2057
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3.0 Equipment List

The equipment list is divided into 3 separate sections, including field, computer, and laboratory
categories. This is a complete list of the equipment used during our trial deployment, though
additional items may be necessary for the needs of other surveys.

3.1 Field Equipment

1. 72 40-Hz geophone (it is advisable to bring a few extra geophones on any field outing)
2. 3 geophone cables
3. 3 geodes
4. 3 geode patch cables
5. 3 geode-battery connectors
6. 1 geode-laptop adapter
7. 6 Yuasa sealed rechargeable lead-acid batteries
8. 3 tape measures (50 m+)
9. 1 trigger cable
10. trigger switches (two exist: a geometrics manufactured trigger and geophone that has been

rigged to serve as a trigger)
11. 1 strike plate
12. 1 hammer
13. 1 seismic rifle (stored in pelican case).  The following items should always be stored in the

pelican case:
a. 1 rifle barrel(s)
b. 1 action (bolt assemblage and trigger. Note: The action should always be locked

when not in use and during transport with a trigger lock)
c. 2 trigger lock keys (Dr. Greg Pasternack retains extra keys in case of emergency)
d. go-no-go cartridge (only one exists so be extra careful with this critical item)
e. Allen keys (3/4 and 3/16 size)

14. 1 seismic rifle base plate
15. 30.06 ammunition (the amount should be determined at the beginning of any survey)
16. 1 can WD-40 lubricant
17. rifle cleaning supplies (brush, cloth tips, gunkout)
18. 1 auger
19. auger 2-stroke fuel (stored in labeled red gas container)
20. extra auger oil canister
21. 1 broom
22. several pairs of gloves
23. several pairs of ear-plugs
24. 1 GPS
25. first aid
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26. water, sunscreen, hat

3.2 Computer Equipment (take into the field)
1. Gateway laptop computer with MGOS software installed
2. 6 Gateway computer Solo 9500 batteries

3.3 Laboratory Equipment

1. Schumacher 2/10/50 Amp Battery Charger

4.0 Field Equipment Setup

Several steps are required to setup the seismic equipment so that signal can be collected in the
field.  The following text details a sequence of steps required to set up the seismic equipment in the
field.

1) Choose the site of the line (previous subsurface knowledge and airphotos may help
in this endeavor).

2) Lay the tape measure out along the desired line. This should start at the first shot
location and run to the 72nd geophone.

3) Place the geophones (spike first) into the ground along side the tape measure. Use
the tape measure to ensure that the geophone spacing is even and regular.

4) Lay the geophone cable out next to the array of geophones that are planted firmly in
the ground. Each cable has the capacity to connect to 24 geophones.  The cables are
considered “high end” cables, which means that they should be arranged according to
geophone attachment slots.  These slots range from a low of 1 at the start of the line to a
high value of 24 at the end of the line.  Examination of the cables reveals that each
geophone slot is labeled with numbers 1-24.  In addition (and incase the numbers rub off
the geophone cable), it should be noted that the cables have attachments at both ends, one
black and one red. The black attachment is at the low end (1) and does not plug into
anything.  The red attachment is at the high end (24) and plugs into a geode.

5) Connect geophones to the cables as illustrated below.
6) Connect geodes together using geode patch cables.
7) Connect one battery to each geode using the geode battery connector (red-on-red;

black-on-black).
8) Run a patch cable from the first geode to the geode-laptop adapter.
9) Plug the geode-laptop adapter into the computer.
10) Connect the trigger cable to the first geode in the line.
11) Run the trigger cable to the first shot point.
12) If using the rifle, then auger seismic holes at desired intervals and move tape

measure to end of the line. If using hammer leave tape measure out to assist with properly
spacing the shots.

The next step is to assemble the rifle.
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1) Remove the action trigger lock and place the key back in the pelican case.
2) Place the go-no-go cartridge in the top of the open barrel.
3) Screw the action onto the barrel with the go-no-go cartridge still in it.  Make

sure that the bolt is closed at this time.
4) When the action gets really tight loosen the action just a bit and then tighten

the action onto the barrel using the 3/16” Allen key. Do not pull the trigger because the
action’s firing pin may get damaged when it strikes the solid go-no-go cartridge.

5) Open the bolt and the go-no-go cartridge should pop out. Put the go-no-go
cartridge back in the pelican case.

6) Loosen the bolt on the base plate.
7) Take the assembled action-barrel and place the barrel in the base plate,

positioning it at the desired depth and lining up the barrel notches with the base plate
clamp.

8) Turn the base plate clamp and tighten with a 1/4" Allen key. Tighten the
bolt for extra safety (this acts as a lock).

9) Carry the gun out to the first shot location and place it in the augered hole.

The next step is to turn on the geodes (blue lights should be flashing) and then turn on the
computer (check the battery to make sure it is at 100%). Launch MGOS software and proceed to
Section 5.0 Computer Software Setup.

If the computer does not detect all of the geophones then it can be one of several things:
1) Check to make sure the geophones are all attached properly.
2) Make sure the geophones cables are properly connected to the geodes. From experience,

these cables may appear screwed in, but if they are slightly crooked then some geophones
may not register.

3) Make sure the geodes are properly connected together.
4) Check the geode computer connection.

5.0 MGOS Computer Software Setup

After the MGOS software is turned on, four windows should appear on screen, including a text,
shot, noise, and spectra window.  Reshape the shot window so it is a vertically oriented rectangle
because this is the best configuration for viewing the data.

The text window can be used to view the initiation of the system to check that all geophones are
registered and to track data collection.

The noise window should ALWAYS BE KEPT OPEN. If it is minimized then a resource leak is
initiated in the software (this is a bug in the software) and the computer will eventually crash. The
noise window is used to ascertain that all geophones are properly connected and attaining signal.

The spectra window shows the source frequency.
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The shot window shows the actual data that is being collected with each shot and will change from
shot to shot.

The first step is to set up the parameters for your survey. This is fairly simple, though several
parameters must be set. The following list details those parameters starting at the left pull down
menu and going to the right.

Survey Menu:

• Start a new survey and give it a name.
• Set initial line number to 1.
• Set initial tape number to 100 (though this does not matter because we are not saving to

tape).

Geom Menu:

• Set survey mode to reflection.
• Set group interval to the value of the geophone spacing i.e. if the geophones are 1 m apart

then set this value to 1 or if the are 80 cm apart set this value to 0.8.
• Skip group/shot location for now.
• Set phone increment to 0.
• Set shot increment to the same value as group interval. This value represents the distance

between shots.
• Set gap to 0 for both hi and low settings.

Observer Menu:

• You can fill in a description of the survey under Edit Survey Description or simply skip
this menu.

• Set the line number to 1 under New Line Number and set the starting file number to 1 plus
some multiple of 1000. Geometrics suggests that the numbering system should be in the
thousands, so the first file in a line should be, for example, 1001 or 5001 etc…

Acquisition Menu:

• In the sample interval/record length menu define the parameters that apply to the survey i.e.
125 ms sample interval; .5 or .25 sec record length; delay 0 sec.

• Set acquisition filters as needed though they do not need to be used because filters will be
applied to the data in the post-collection processing phase.

• Correlation should be off (do not tick on) and set pilot to –1.
• Under the stack options menu select auto stack and set the stack limit equal to the number

of shots per site.
• Skip specify channels for now.
• Select desired preamp gains to desired level i.e. all 24 dB.
• Set stack polarity positive; look in the text window to make sure this has been set.
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File Menu:

• Under storage parameters:
o Set the next file to be written to the same as the first file (i.e. 1001 or 5001). This

parameter may have to be reset by 1 (i.e. 1536 back to 1535) during a survey if the
software rolls right when data is not collected.

o Set auto save on. Set stack limit to the same value as under the Acquisition Menu.
o Set data type to seg-2.
o Select save to disk and specify a path and directory.

• The Read Disk option allows the user to open a seismic data file (*.dat). This file can be
viewed in the Shot Window.

Display Menu:

The display menu is simply a way of viewing the data and the parameters that are set under this
menu and do not modify the raw data in any way.  There are several submenus under the Display
Menu and for best viewing these should be set as follows:

• Shot Parameters
o Display boundary should be set from 1-72 channels and the time 0-.5 or .25 sec.
o Gain style should be set to AGC with AGC window in samples = 250 and trace overlap

= 1.
o Set trace style to variable and do not clip.
o Set the display filter as follows: select enable display filters and set roll-off at 24dB.

Next set the high cut filter at 250 Hz, the low cut filter at 10 Hz, and the notch to out.

• Spectral Parameters
o Set the start and end channels to 1 and the Hz range to 0-500.
o Set the trace style to variable.
o In the analysis parameters set the start time to 0 and the end time to 0.5. Also select

horizontal trace display.
o Select autoscale traces under display gains.

• Noise Monitor Parameters
o Set the plot blue trace to 12 traces.
o The noise scale values can be adjusted by activating the noise

monitor and using the up and down arrow keys to examine the noise. The best
configuration is where the amplitude of the noise is equal to about 0.5 the trace width.

Do Survey Menu:

This menu provides the user with short-cut keys that can be used during a survey instead of the
mouse. Some shortcut keys worth remembering include:

• Arm/Disarm: by pressing “1” the software can be manually armed or disarmed.
When the software is armed it is capable of attaining signal. When disarmed, the software
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is in a deactivated mode and cannot collect data even if a seismic source is set off (i.e. a
shot fired).

• Shot Location: Key “3” is used to quickly show the next shot location to be
written.

• Noise Display: The noise display can be displayed by pressing “4”.
• If the traces to do not appear or appear as straight lines in the shot window

during a survey then they can be displayed by pressing the auto scale traces key “6”.
• Save: The next file to be saved can be displayed by pressing “7”.
• Channels (geophones) can and must be advanced along a line using roll right or

reversed using roll left if accidentally moved forward or if a shot has to be redone.  The
END key causes the software to roll right whereas the HOME key causes the software to
roll left.

Window Menu:

Various windows including noise, trace, spectra, and log can be activated using this menu. The
various windows can also be tiled and restored through this menu.

Answers Menu:

A help menu for refraction surveys.

Print Menu:

Allows individual shots and spectra to be printed.

System Menu:

Various survey parameters can be set under this menu. The most important include:

• The date, time and units setting. This is where the survey units (either feet or meters should
be set).

• The trigger option is also very important. The trigger should be set to automatic with a 0
second holdoff. Trigger sensitivity will have to be determined for the type of trigger that is
being used but a value of 20 (relatively low) is a reasonable starting value. This value will
enable slight movement in the trigger without accidentally setting it off whereas a higher
value like 95 will make the trigger very sensitive and it could easily be initiated by slight
movement.

Final Preparation:

The final step is to check the configuration of the survey. This can be done in either the Geom
Menu: Group/Shot Locations or in the Acquisition Menu: Specify Channels.  This should be
done at the start of any survey and then the software will continually update the configuration as
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the survey progresses, though it is advisable to check the configuration periodically or after a line
is moved.

1) Make sure the shot coordinate is set to the offset distance between the shot and the first
geophone.  For example, if the shot is 10 m behind the first geophone, then the shot coordinate is
set to 10. Make sure that the proper units (meters versus feet) are set (if not, then set this parameter
under the System Menu)

2) The interval values are the distance between shots. This value should be constant along the line.
Enter this value in each space.

3) The geophone coordinate represents the spatial distribution of geophones along the line. The
first geophone is positioned at the start of the line and should be labeled as 0. By pressing the right
arrow key, the other fields should be filled in automatically.  These values should increment
according to the interval value.

4) The gain is set under the Acquisition Menu

5) The “use” option is where the desired geophones are activated. For example, in a typical survey
3 geodes are spread out along a seismic line and each geode is connected to 24 geophones for a
total of 3 geodes x 24 geophones/geode = 72 geophones.  Therefore, when shooting a line
geophones 1-48 are active at the start and 49-72 are inactive for the first shot. For the second shot
geophones 2-49 are active and geophones 1 and 50-72 are inactive. During the third shot,
geophones 3-50 are active and 1,2, and 51-72 are inactive, etc…The 24th shot will have geophones
24-72 active and 1-23 inactive. Therefore, at the start of a line it is important to activate and
inactivate the appropriate geophones. In the use option, press “1” to activate the geophones and
then use the slide scale bar and move to geophone #49, place the cursor in the geophone 49 slot
and press “4”. This action will inactive every geophone from #49 to the end of the line.  Activated
geophones are ready to collect “data” whereas “inactivated” geophones will be labeled
accordingly.

6) Set freeze to no.

6.0 Conducting A Reflection Survey

The system should now be set up properly to conduct a survey. There are several simple steps that
now must be followed.

1) Activate the software so it can receive signal by pressing “1”, again note that the software
will signal that it is “busy” on the bottom left corner. Simply wait a few seconds as it
prepares for signal acquisition.

2) Generate the seismic signal (i.e. swing the hammer or shoot the rifle).
3) Examine the signal in the shot window. If it looks good, roll the software right to activate

the next group of geophones (i.e. 1-48; 2-49; 3-50 etc…) by pressing the end key.
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4) Clear the window by pressing the “enter” key on the laptop.
5) Activate the software again by pressing “4”.
6) Generate the next seismic signal
7) Proceed in this fashion, repeating steps 1-6 until the end of the line is reached. This will

happen after 24 seismic signals have been fired.
8) Make sure all data was saved in the “File Menu”-Read Disk directory.
9) Turn the computer off to save battery power.
10) Next move the first geode and 24 geophones to the end of the line where geophone number

72 is located, and set them up again as described in the Field Equipment Setup.  Essentially
the first geode and 24 geophones are being appended to the end of the line so that the line
can be extended in a leap-frog fashion.

11) Turn the computer on check the configuration in either the Geom Menu: Group/Shot
Locations or in the Acquisition Menu: Specify Channels, being sure that the proper
geophones are activated. All other setting will be saved and do not have to be adjusted.

12) Start shooting the line again as in step 1.

7.0 Post-Collection Data Processing

After the seismic survey is completed, the raw seismic data has to be processed using

WinSeis or some other seismic processing softer. Dr. Greg Pasternack (see Section 2.0) has a

hardcopy manual that documents the processing steps required by the WinSeis software.
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Figure 1. Arial photograph of the MWT showing core locations (blue dots), summer 2000 seismic
lines (red lines), and planned Summer 2002 seismic lines (green lines). The Geoprobe cores that

were analyzed in the laboratory are labeled 2, 6, and 8 whereas the analyzed Delta Meadows
vibracore is labeled DM.
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Figure 2. Frequency spectrum of the raw seismic data.  Most of the energy generated by the
sledgehammer yielded waves in the 5-35 Hz range.  The send-phase seismic-gun generated more
energy in the >40 Hz range.  40-Hz geophones then captured the widest spectrum of usable data

(thick line is zone of best reading and thin line shows range of observation) whereas 100-Hz
geophones would miss a lot of potential information. This new configuration optimized the effort

to image the shallow subsurface relevant to restoration.
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Figure 3.  Seismic image of the MWT showing gently dipping u-shaped features, possibly
representing ancient channels (shown in white boxes) that have cross-cut the tract.
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         Figure 4. The "seismic-rifle" used during seismic profiling.
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